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a b s t r a c t

The paper is concerned with the synchronization problem of inertial memristive neural networks with
time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks
described by second-order differential equations can be transformed into first-order differential equa-
tions. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By
using the controller, the sufficient conditions for assuring the global exponential synchronization of the
derive and response neural networks are derived based on Lyapunov stability theory and some inequality
techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the
theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

According to the relationship between the charge andmagnetic
flux in the circuit, Chua (1971) predicted that there exists the
fourth fundamental circuit element which is called memristor.
In 2008, the first real memristor device was confirmed by the
researchers ofHewlett–Packard (Strukov, Snider, & Stewart, 2008).
After that, more and more researches began to pay attention to
thememristor. Due to its special properties, such as nanoscale, low
energy dissipation and memory ability, memristor can be applied
in pattern recognition (Sharifi & Banadaki, 2010), image process-
ing (Chen, Zeng, & Jiang, 2014; Kim, Sah, Yang, & Roska, 2012), and
optimization problems (Wen & Zeng, 2012). In particular, it can
simulate synapse among the neurons better than resister in the
circuit implementation of neural networks (Wang, Li, Peng, Xiao,
& Yang, 2014). By replacing resister with memristor in the circuit
implement of neural network, we can obtain memristive neural
networks which are very suitable to simulate human brain (Jo et
al., 2010).

As we all know, the synchronization is one of the most im-
portant dynamical behaviors of neural networks (He, Qian, Han, &
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Cao, 2011). Due to its wide applications, including secure commu-
nications (Lakshmanan, Prakash, & Lim, 2018), associative mem-
ory (Tan & Ali, 2011), and biological networks (He & Cao, 2009), the
synchronization of neural networks has attracted great attention of
researchers. Recently, many related results on the synchronization
problem of MNNs have been published (Abdurahman & Jiang,
2016; Guo, Wang, & Yan, 2015; Zheng & Xian, 2016). In Zheng and
Xian (2016), a linear delay-dependent state feedback controller
was designed to ensure that chaotic MNNs can be globally asymp-
totically synchronized by some inequality techniques. In Guo et
al. (2015), the authors investigated the global exponential syn-
chronization of memristive recurrent neural networks (MRNNs)
with time delays by using four different control strategies. The
authors in Abdurahman and Jiang (2016) studied the exponential
synchronization of delayed MNNs with discontinuous activation
functions by using some new techniques and differential inclusion
theory.

The inertial term in nonlinear system is taken as a critical tool
to generate bifurcation and chaos (He, Li, & Shu, 2012). Therefore,
inertial neural networks may exhibit more complicated dynamical
behaviors, such as chaos, which is important in secure communi-
cation. The concept of inertial neural networks was put forward
by Babcock and Westervelt at 1987 (Babcock & Westervelt, 1987).
Many results on synchronization of inertial neural networks have
been reported (Cao & Wan, 2014; Dharani, Rakkiyappan, & Park,
2017; Hu, Cao, & Alofi, 2015). However, as far as we know, there
are fewer results on synchronization of inertial memristive neural
networks (Rakkiyappan, Kumari, Chandrasekar, & Krishnasamy,
2016; Rakkiyappan, Premalatha, Chandrasekar, & Cao, 2016). In
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Rakkiyappan, Kumari et al. (2016), by employing the second or-
der differential inclusion theory and matrix measure method, the
periodicity and synchronization of inertial memristive neural net-
works with supremums and time delays was investigated. The
authors in Rakkiyappan, Premalatha et al. (2016) studied the sta-
bility and pinning synchronization of inertial memristive neural
networkswith timedelay byusingdifferential inclusion theory and
matrix measure strategy. In these two papers, the activation func-
tions fi, i = 1, 2, . . . , n are assumed to satisfy fi(±T ) = 0, where T
is the switching threshold. This assumption is unreasonable since
some classical activation functions, such as f (x) =

|x+1|−|x−1|
2 and

tanh(x), do not satisfy it. Then, a natural question arises: would this
assumption be removed?

Motivated by the above discussions, the purpose of this paper
is to investigate the problem of global exponential synchroniza-
tion of inertial MNNs with time-varying delay. Inertial memristive
neural network can be converted to first-order differential equa-
tions by introducing a variable transformation. Different from the
existed results (Rakkiyappan, Kumari et al., 2016; Rakkiyappan,
Premalatha et al., 2016), in this paper, a novel and simple nonlinear
controller is put forward to ensure that the global exponential
synchronization between drive system and response system is
realized. Based on Lyapunov stability theory and some inequal-
ity techniques, several synchronous criteria are derived without
assuming that the activation functions are equal to zero at the
switching threshold.

The paper is organized as follows. In Section 2, somepreliminar-
ies are provided. The main results are derived in Section 3. In Sec-
tion 4, some numerical simulations are presented to substantiate
the theoretical results. Finally, conclusions are drawn in Section 5.

2. Preliminaries

We consider the following inertial memristive neural network
with time-varying delay:

d2ui(t)
dt2

= − ai
dui(t)
dt

− biui(t)

+

n∑
j=1

cij(fj(uj(t)) − ui(t))fj(uj(t))

+

n∑
j=1

dij(fj(uj(t − τ (t))) − ui(t))fj(uj(t − τ (t)))

+ Ii, for i = 1, 2, . . . , n, (1)

where ui(t) is the state of the ith neuron at time t; the second-
order derivative of ui(t) is called an inertial term; ai > 0 and
bi > 0 are constants; fi(·) denotes the activation function of the ith
neurons; τ (t) is the time-varying transmission delay and satisfies
0 < τ0 ≤ τ (t) ≤ τ ; Ii denotes the external input on the ith
neuron; cij(fj(uj(t))− ui(t)) and dij(fj(uj(t − τ (t)))− ui(t)) represent
the memristive feedback connection weight and delayed feedback
connection weight, respectively.

For convenience,wedenote cij(ui) = cij(fj(uj(t))−ui(t)), dij(ui) =

dij(fj(uj(t − τ (t))) − ui(t)), and fij(t) = fj(uj(t)) − ui(t), fij(t −

τ (t)) = fj(uj(t − τ (t))) − ui(t). As we know, the connection
weights are realized by memristors in the circuit implementation.
According to pinched hysteretic feature of memristor, we provide
a mathematical model of the connection weights as follows:

cij(ui) =

⎧⎪⎪⎨⎪⎪⎩
c ′

ij, f −

ij (t) > 0,

c ′′

ij , f −

ij (t) < 0,

lim
s→t−

cij(fij(s)), f −

ij (t) = 0

and

dij(ui) =

⎧⎪⎪⎨⎪⎪⎩
d′

ij, f −

ij (t − τ (t)) > 0,

d′′

ij, f −

ij (t − τ (t)) < 0,

lim
s→t−

dij(fij(s − τ (s))), f −

ij (t − τ (t)) = 0,

for i, j = 1, 2, . . . , n, where f −

ij (·) denotes the left derivation
of fij(·). Moreover, denote ĉij = max{c ′

ij, c
′′

ij }, čij = min{c ′

ij, c
′′

ij },
d̂ij = max{d′

ij, d
′′

ij}, ďij = min{d′

ij, d
′′

ij}, c̄ij = max{|c ′

ij|, |c
′′

ij |} and
d̄ij = max{|d′

ij|, |d
′′

ij|}.
The initial value of (1) is given as⎧⎨⎩
ui(s) = φi(s),
dui(s)
dt

= ψi(s), −τ ≤ s ≤ 0,
(2)

where φi(s), ψi(s) ∈ C([−τ , 0],R) which denotes the set of all
continuous functions mapping the interval [−τ , 0] into R.

Remark 1. According to the definition of connection weights,
cij(ui) and dij(ui) in system (1) vary dependently in the state. There-
fore, system (1) can be treated as a second-order state-dependent
switching system. When c ′

ij = c ′′

ij , d
′

ij = d′′

ij , system (1) will become
a traditional inertial neural network, see He et al. (2012) Li, Chen,
and Liao (2004) and Liu, Liao, Liu, Zhou, and Guo (2009).

Since the classical definition of solution is invalid due to the
discontinuity of memristive connection weights, we need to intro-
duce the definition of solution in sense of Fillipov for system (1).

A function u(t) = (u1(t), u2(t), . . . , un(t))T : [−τ , T ) → Rn,
T ∈ (0,+∞] is a solution (in the sense of Filippov) of system
(1) with initial condition (2), if u(t) is continuous on [−τ , T ) and
absolutely continuous on any compact subinterval of [0, T ), and for
almost all (a.a.) t ∈ [0, T ) satisfies

d2ui(t)
dt2

∈ − ai
dui(t)
dt

− biui(t) +

n∑
j=1

co[cij(ui)]fj(uj(t))

+

n∑
j=1

co[dij(ui)]fj(uj(t − τ (t))) + Ii, (3)

for i = 1, 2, . . . , n, where co[cij(ui)] = [čij, ĉij] and co[dij(ui)] =

[ďij, d̂ij].
Next, we introduce a variable transformation as follows:

yi(t) = ξi
dui(t)
dt

+ ui(t),

where ξi > 0. Without loss of generality, let ξi = 1, then, for a.a.
t ∈ [0, T ), we have
dyi(t)
dt

∈ − [bi + 1 − ai]ui(t) − (ai − 1)yi(t)

+

n∑
j=1

co[cij(ui)]fj(uj(t))

+

n∑
j=1

co[dij(ui)]fj(uj(t − τ (t))) + Ii.

Hence, system (3) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui(t)
dt

=−ui(t) + yi(t),

dyi(t)
dt

∈−αiui(t) − βiyi(t) +

n∑
j=1

co[cij(ui)]fj(uj(t))

+

n∑
j=1

co[dij(ui)]fj(uj(t − τ (t))) + Ii,

(4)
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