Neural Networks 101 (2018) 68-78

journal homepage: www.elsevier.com/locate/neunet

Contents lists available at ScienceDirect

Neural Networks

Effective neural network training with adaptive learning rate based 1)

on training loss

Check for
updates

Tomoumi Takase *, Satoshi Oyama, Masahito Kurihara
Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9 Kita-ku, Sapporo, Japan

ARTICLE INFO ABSTRACT

Article history:

Received 14 April 2017

Received in revised form 17 December 2017
Accepted 29 January 2018

Available online 13 February 2018

Keywords:

Multilayer perceptron
Deep learning

Neural network training
Stochastic gradient descent
Learning rate

Beam search

A method that uses an adaptive learning rate is presented for training neural networks. Unlike most
conventional updating methods in which the learning rate gradually decreases during training, the
proposed method increases or decreases the learning rate adaptively so that the training loss (the sum
of cross-entropy losses for all training samples) decreases as much as possible. It thus provides a wider
search range for solutions and thus a lower test error rate. The experiments with some well-known
datasets to train a multilayer perceptron show that the proposed method is effective for obtaining a better
test accuracy under certain conditions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Deep learning has recently demonstrated excellent perfor-
mance for various image classification (Krizhevsky, Sutskever, &
Hinton, 2012; Shi, Ye, & Wu, 2016; Wu & Gu, 2015) and speech
recognition tasks (Fayek, Lech, & Cavedon, 2017; Hinton et al.,
2012; Sainath et al., 2015). This success is mainly due to the
development of improved parameter updating methods. AdaGrad
(Duchi, Hazen, & Singer, 2011), RMSprop (Tieleman & Hinton,
2012), AdaDelta (Zeiler, 2012), and Adam (Kingma & Ba, 2015),
which are updating methods based on stochastic gradient descent
(SGD), are now widely used, and selection of a suitable updating
method for each task can lead to a better performance.

Users of these updating methods need to define the initial
parameters, including the initial learning rate. Defining this rate
is especially important because an inappropriate learning rate can
lead to poor local solutions where the value of the loss function
is no better than other local solutions. Thus we should say that a
major disadvantage of these methods is that they have sensitive
hyper parameters which are difficult to tune appropriately.

One method without any sensitive hyper parameters is the
step-size control method of Daniel, Taylor, and Nowozin (2016), in
which the step-size for the learning rate is automatically controlled
by reinforcement learning (Sutton & Barto, 1998) independent of
its initial setting. Another such method is the LOG-BP algorithm of

* Corresponding author.
E-mail addresses: takase_t@complex.ist.hokudai.ac.jp (T. Takase),
oyama@ist.hokudai.ac.jp (S. Oyama), kurihara@ist.hokudai.ac.jp (M. Kurihara).

https://doi.org/10.1016/j.neunet.2018.01.016
0893-6080/© 2018 Elsevier Ltd. All rights reserved.

Kanada (2016), which exponentially reduces the learning rate by
combining back propagation with the genetic algorithm.

A straightforward approach to adjusting the learning rate is to
multiply it by a certain constant, such as 0.1, every fixed number of
training epochs, such as 100 epochs. This approach is widely used
to improve test accuracy. However, this approach is inflexible in
the sense that the learning rate must be fixed to a single value until
the next setting time.

In this paper, we present a more flexible method for automati-
cally adjusting the learning rate during training by either increas-
ing or decreasing its value adaptively based on a tree search for
minimizing the training loss. Unlike the straightforward approach,
our method performs the trainings independently in parallel with
several learning rates during each epoch, choosing as the actual
learning rate the one that has resulted in the smallest training loss
(the sum of cross-entropy losses for all training samples). This is
regarded as an optimization process. However, we find dynamic
programming and reinforcement learning inappropriate for our
task because (1) the training is one-way, (2) the training loss cannot
be analytically calculated, and (3) the training for each epoch takes
much time. To overcome this problem, we have developed an effi-
cient search algorithm based on breadth-first beam search. In the
sequel, our method will be referred as ALR technique (Adaptable
Learning Rate Tree algorithm).

In Section 2, we analyze the behavior of the learning rate for
various parameter updating methods. In Section 3, we describe
ALR technique. In Section 4, we report the experimental results for
both the proposed and conventional methods. In Sections 5 and 6,
we discuss the effects of three main parameters. In Section 7, we
summarize our work and discuss some future works.

https://doi.org/10.1016/j.neunet.2018.01.016
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2018.01.016&domain=pdf
mailto:takase_t@complex.ist.hokudai.ac.jp
mailto:oyama@ist.hokudai.ac.jp
mailto:kurihara@ist.hokudai.ac.jp
https://doi.org/10.1016/j.neunet.2018.01.016

T. Takase et al. / Neural Networks 101 (2018) 68-78 69

2. Learning rate

Since SGD is the base of many updating methods, we first
describe an updating method based on SGD. Many studies related
to SGD have been conducted (Breuel, 2015; Hardt, Recht, & Singer,
2015; Mandt, Hoffman, & Blei, 2016; Neyshabur, Salakhutdinov, &
Srebro, 2015).

In SGD, parameter updating is performed for each sample or for
each mini batch:

Oci1 = O — 1 - Vo, E (6 xV5y?), (1)

where 6 are the weights (and biases), which are the neural network
parameters, x is input with training sample i, y® is the label, E is
the loss function, and 7 is the learning rate.

Increasing n can widen a range of search, but too large makes
the convergence to a solution difficult. An effective way to avoid
this problem is to reduce the learning rate during training. For
example, AdaGrad replaces n in Eq. (1) with n, defined as follows.

Tey1 =T + Vg, E o Vy E (2)

Ney1 = M (3)
+ m +e)

where o in Eq. (2) means the Hadamard (element-wise) product,

and ¢ in Eq. (3) is a small constant used for stability. Since r; is

increasing, 7, is decreasing.

Most updating methods, such as Adam, are based on AdaGrad,
and their updating equations were designed so that the learning
rate decreases during training. The search range for a solution
gradually narrows, and search for a better solution becomes dif-
ficult. In contrast, if the learning rate is increased during training
so that the search range remains wide, poor local solutions can be
easily avoided, but convergence becomes difficult. A combination
of reducing and increasing the learning rate should thus be an
effective way to improve training.

In ALR technique, the learning rate is increased or decreased
so that the training loss is minimized, meaning that » in Eq. (1)
is changed for each epoch on the basis of the loss function:

Ocs1 = 0 — e - Vo E (6 x75y7) . (4)

Unlike AdaGrad, ALR computes n; common to all weights for effi-
ciency reasons.

ALR modifies the learning rate on the basis of training loss,
but generally, a decrease in training loss can lead to over-fitting
to training data. However, the over-fitting can be restrained by
using a technique such as weight upper limit (Srebro & Shraibman,
2005) or dropout (Srivastava, Hinton, Krizhevsky, Sutskever, &
Salakhutdinov, 2014).

3. ALR technique
3.1. State transition

In this section, we describe ALR technique, which adjusts the
learning rate on the basis of the loss function. As mentioned in Sec-
tion 1, training is independently performed with several learning
rates during each training epoch, and the rate that resulted in the
smallest training loss is used as the actual learning rate at each
epoch. Because the training loss is the value of the loss function,
ALR technique indirectly uses the shape of the loss function. While
a method for theoretically finding the minimum of a loss function
without using its shape has been proposed (Song, Schwing, Zemel,
& Urtasun, 2016), the range of application is limited because it
depends on a specific loss function. Our method does not depend
on a specific loss function.

epoch: t

epoch:t +1

Ne+1

Fig. 1. State transition from epoch ¢t to epoch t + 1. N: number of branches; r,,: scale
factor for each branch; n;: learning rate at epoch t.

We use a tree structure to represent state transition during
training. The state transition from epoch t to epoch t + 1 is
illustrated in Fig. 1. Each node represents the state (the learning
rate) at an epoch in the training. The parent node at epoch t has
N branches, and one of the different scale factors ry, .. ., ry (fixed
a priori, common to every node) is assigned to each branch. The
learning rate at epoch t + 1 is obtained by multiplying the learning
rate at epoch t by the scale factor ry, if the nth child node was
chosen at epoch t. By r,,, we denote the scale factor chosen in
the transition from epoch t to t + 1, wheren; € 1,2, ..., N. The
relationship between 1, and 1,1 is given by

Ne+1 = Ne - T - (5)

The repeated use of Eq. (5) leads to the learning rate at an arbitrary
epoch s as follows:

s—1
ns=no [[o (6)
t=1

where 1 is the initial learning rate.

Actually, ALR combines multiple state transitions, as shown in
Fig. 2. A search is performed using the tree structure. To perform
it efficiently, ALR uses a breadth-first beam search, as described in
Sections 3.2 and 3.3.

3.2. Parameters

ALR has three main parameters: the number of branches, the set
of scale factors, and the beam size. The number of branches is N for
each node, and the set of scale factors for each node is represented
as {ry, ..., ry}. The beam size M represents the bounded breadth
of the breadth-first search. If the number of nodes k at the same
epoch exceeds M, the (k — M) worst nodes (in terms of training
loss) are eliminated.

The user must fix these parameters (common to all nodes and
epochs) before training. Here, the number of branches and the scale
factor are common to all nodes, and the beam size is common
to each epoch. The effects of these main parameters and a minor
parameter 7o will be discussed in Sections 5 and 4.4, respectively.

3.3. Procedure

We explain the state transition procedure, using the example
tree structure shown in Fig. 2, where the number of branches is
N = 3, the scale factors are {2.0, 1.0, 0.5}, and the beam size is
M = 4. The number inside each node represents the ranking of
the training loss at each epoch (the smaller the training loss is, the
smaller the number is). The state transitions at each epoch are as
follows.

epoch 1 — 2: In node A, one-epoch trainings are independently
performed for the three scale factors. The branch that produces the
smallest training loss is chosen, and the state changes to node B.
The two nodes other than node B are stored for the next step.

epoch 2 — 3: Generated as candidates for the next transition are
9 nodes, for each of which one-epoch training is independently

Download English Version:

https://daneshyari.com/en/article/6863013

Download Persian Version:

https://daneshyari.com/article/6863013

Daneshyari.com

https://daneshyari.com/en/article/6863013
https://daneshyari.com/article/6863013
https://daneshyari.com

