
Neural Networks 101 (2018) 94–100

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Distributed support vector machine in master–slave mode
Qingguo Chen, Feilong Cao *
Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou 310018, Zhejaing Province, PR China

a r t i c l e i n f o

Article history:
Received 21 October 2017
Received in revised form 31 January 2018
Accepted 6 February 2018
Available online 15 February 2018

Keywords:
Support vector machine (SVM)
Alternating direction method of multipliers
(ADMM)

Distributed algorithm
Master–slave mode

a b s t r a c t

It is well known that the support vectormachine (SVM) is an effective learning algorithm. The alternating
direction method of multipliers (ADMM) algorithm has emerged as a powerful technique for solving
distributed optimisation models. This paper proposes a distributed SVM algorithm in a master–slave
mode (MS-DSVM), which integrates a distributed SVM and ADMM acting in a master–slave configuration
where the master node and slave nodes are connected, meaning the results can be broadcasted. The
distributed SVM is regarded as a regularised optimisation problem andmodelled as a series of convex op-
timisation sub-problems that are solved by ADMM. Additionally, the over-relaxation technique is utilised
to accelerate the convergence rate of the proposed MS-DSVM. Our theoretical analysis demonstrates that
the proposedMS-DSVMhas linear convergence, meaning it possesses the fastest convergence rate among
existing standard distributed ADMM algorithms. Numerical examples demonstrate that the convergence
and accuracy of the proposed MS-DSVM are superior to those of existing methods under the ADMM
framework.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

As an effective supervised learning algorithm, the support vec-
tor machine (SVM) (Vapnik, 1998) has been widely used in many
research fields, such as medical imaging (Codella et al., 2015),
bioinformatics (Bao, Hua, Yuan, & Huang, 2017; Huang & Du, 2008;
Liu, Qian, Dai, & Zhang, 2013a; Zheng & Lu, 2011), speech pro-
cessing (Han, Park, & Lee, 2016; Trabelsi & Ellouze, 2016), facial
recognition (Li & Huang, 2008), handwriting recognition (Mustafa
& Prof, 2015), and radar image recognition (Huang, 1999). In the
real world, the amount of data requiring processing has exploded.
Data are typically acquired in various distributed forms, which
leads to the failure of the conventional SVM algorithm running
on a single computer. Therefore, it is necessary to integrate the
traditional SVM with various effective distributed algorithms.

In recent years, the alternating direction method of multipliers
(ADMM) (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011; Ouyang,
He, Tran, & Gray, 2013) has become one of the most widely used
approaches to solving various distributed optimisation problems.
ADMM is an algorithm that combines the decomposability of dual
ascent with the strong convergence properties of the multipliers
method. Recent work (Shi, Ling, Yuan, Wu, & Yin, 2014) has shown
that the distributed ADMM has a linear convergence rate under
the assumption that local objective functions are strongly convex
and have Lipschitz continuous gradients. Deng and Yin (2016) and

* Corresponding author.
E-mail address: icteam@163.com (F. Cao).

Iutzeler, Bianchi, Ciblat, and Hachem (2016) observed the same
convergence rates using different assumptions and provided some
equivalence conditions. In Goldstein, Donoghue, Setzer, and Bara-
niuk (2014), it was proved that the dual objective value of a mod-
ified ADMM converges at O(1/k2) under the assumptions that two
sub-problems are solved exactly and both objective functions are
strongly convex. Simone et al. (Scardapane,Wang, & Panella, 2016;
Scardapane, Wang, Panella, & Uncini, 2015) addressed distributed
learning for random vector functional-link networks (RVFL) and
echo state networks via ADMM.

Generally, topologies for distributed ADMM can be divided into
the following two categories according to the types of network
connections:

• Peer-to-peer mode: Every node is connected to at least one
other node, and nodes calculate local data and exchange
information with their neighbours (Iutzeler, Bianchi, Ciblat,
& Hachem, 2013; Mokhtari, Shi, Ling, & Ribeiro, 2016; Wei
& Ozdaglar, 2012; Xi & Khan, 2015; Xi, Wu, & Khan, 2017).

• Master–slave mode: A unique master node is connected to
slave nodes and collects results from the slave nodes (Boyd
et al., 2011).

This paper focuses on distributed SVMvia ADMM in amaster–slave
mode.

The distributed SVM has attracted significant research interest
because of its high efficiency. Graf, Cosatto, Bottou, Durdanovic,
and Vapnik (2004) developed a filtering process that can be par-
allelised efficiently to eliminate non-support vectors early in opti-
misation. They utilised SVMs as filters. There have also been similar

https://doi.org/10.1016/j.neunet.2018.02.006
0893-6080/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2018.02.006
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2018.02.006&domain=pdf
mailto:icteam@163.com
https://doi.org/10.1016/j.neunet.2018.02.006


Q. Chen, F. Cao / Neural Networks 101 (2018) 94–100 95

works on parallel designs for centralised SVMs when training sets
are prohibitively large (Bordes, Ertekin, Weston, & Bottou, 2005;
Chang et al., 2007; Do & Poulet, 2006). However, the convergence
of these parallel designs is typically not guaranteed for any given
partitioning of a dataset (Bordes et al., 2005; Graf et al., 2004).
Another class of distributed SVMs relies on local support vec-
tors that are broadcasted to neighbours to obtain a discriminant
function (Flouri, Lozano, & Tsakalides, 2006, 2008; Lu, Roychowd-
hury, & Vandenberghe, 2008). However, these schemes cannot
ensure adequate algorithm performance. Scardapane, Fierimonte,
Di, Panella, and Uncini (2016) employed a distributed gradient de-
scent algorithm and recently developed framework for in-network
non-convex optimisation (NEXT) to implement a distributed semi-
supervised SVM. One of the most noteworthy research directions
for distributed SVMs is to integrate various big data algorithms,
such as MapReduce (You, Yu, Zhu, Li, & Wen, 2014).

Although there have been many studies on distributed SVM,
few have focused on how to integrate distributed SVM and ADMM.
Forero, Cano, and Giannakis (2010) first proposed a method to
train an SVM via distributed ADMM in peer-to-peer mode by de-
composing the original problem as a series of sub-problems. They
demonstrated that a distributed SVM is equivalent to a traditional
non-distributed SVM. However, they did not analyse the conver-
gence of the distributed SVM algorithm. Although the concept of
distributed SVM via ADMM in the master–slave mode was men-
tioned in Boyd et al. (2011), no details were presented.

This paper addresses the problem of distributed SVM in the
master–slave mode (MS-DSVM), where all slave nodes are con-
nected to only one master node. Local data are calculated and the
results are broadcasted to the master node. Because there is no
communication between slave nodes in MS-DSVM, the distributed
SVM can be regarded as a distributed convex optimisation prob-
lem, where the original problem is broken down into several sub-
problems via ADMM. However, solving these sub-problems is still
difficult. In order to accelerate the convergence rate, we solve them
as dual problems. Furthermore, we demonstrate that the proposed
MS-DSVMhas linear convergence,which is the fastest convergence
among existing ADMM algorithms.

The remainder of this paper is organised as follows. Section 2
introduces the traditional SVM, standard ADMM, and distributed
ADMM frameworks. Section 3 describes the proposed MS-DSVM
algorithm, presents its convergence analysis, and proposes the
relaxed MS-DSVM. Section 4 presents numerical results. Section 5
concludes this paper and presents some final remarks.

2. Relevant background

2.1. Support vector machine

Here, we briefly introduce the SVM. Amore detailed description
can be found in Liu, Qian, Dai, and Zhang (2013b). Considering the
binary classification of samples {(Xi, Yi)}ni=1, where Xi ∈ R1×p are
training data and Yi ∈ {−1, 1} are the corresponding labels, the
essence of the SVM is to find the optimal hyperplane that separates
the two classes of data points with the largest margin:

min
w,b

1
2
∥w∥

2
+ C

n∑
i=1

ξi

s.t. Yi(Xiw + b) ≥ 1 − ξi

ξi ≥ 0, i = 0, 1, 2, . . . , n.

(1)

Here, ξi are slack variables and C is a tuneable positive scalar. It can
be equivalently converted into hinge loss with an ℓ2 norm penalty
format:

min
w,b

n∑
i=1

(1 − Yi(Xiw + b))+ +
λ′

2
∥w∥

2, (2)

where the loss function (1 − ·)+ = max(1 − ·, 0) is called hinge
loss and λ′ is a positive regularisation parameter corresponding to
C in problem (1), which controls the balance between the loss and
penalty.

2.2. Alternating direction method of multipliers

Typically, the ADMMalgorithm addresses the following optimi-
sation problem:

min f (x) + g(z)

s.t. Ax + Bz = c
(3)

with x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp, and
f (x) and g(z) are convex functions. ADMM utilises the following
iterative solutions:

xk+1
= argmin

x
f (x) +

ρ

2
∥Ax + Bzk − c + uk

∥
2
2,

zk+1
= argmin

z
g(z) +

ρ

2
∥Axk+1

+ Bz − c + uk
∥
2
2,

uk+1
= uk

+ Axk+1
+ Bzk+1

− c.

(4)

This algorithm is effective when x- and z-minimisations can be
calculated effectively, for example, when they have closed-form
expressions. The advantage of ADMM is that there is only one
parameter ρ. Furthermore, the algorithm has been proved to con-
verge for all values of the parameter under certainmild conditions.

2.3. Distributed ADMM for consensus problems

According to Boyd et al. (2011), research on consensus problems
has a long history. Recently, there have beenmoreworks regarding
survey, and several applications on signal processing and wireless
communications, such as Mateos, Bazerque, and Giannakis (2010),
Qin, Ma, Shi, and Wang (2016), Schizas, Ribeiro, and Giannakis
(2008) and Zhu, Cano, and Giannakis (2010).

If the optimisation objective can be split into N parts:

f (x) =

N∑
i=1

fi(x), (5)

where x ∈ Rn is a global variable and fi(x) are convex functions,
then problem (5) can be equivalently reformulated for the local
variables xi ∈ Rn′

and a common global variable z:

min
N∑
i=1

fi(xi)

s.t. xi − z = 0, i = 1, 2, . . . ,N.

(6)

This is called the global consensus problembecause the constraints
guarantee that all local variables will be equal. The distributed
version of the algorithm is as follows:

xk+1
i = argmin

xi

(
fi(xi) + ykTi (xi − zk) +

ρ

2
∥xi − zk∥2

2

)
,

zk+1
=

1
N

N∑
i=1

(
xk+1
i +

1
ρ
yki

)
,

yk+1
i = yki + ρ

(
xk+1
i − zk+1) .

(7)

Each slave node only solves for its local variable xi and correspond-
ing dual variable yi, which can be accomplished independently for
each i = 1, . . . ,N . Then, the master node collects all the xis from
the slave nodes to update the global variable z. Next, the updated z
is broadcast to all the slave nodes for updating the dual variable yi
and local variable xi in the next iteration. This process is repeated
until all local variables agree with the global variables (i.e., local
variables and global variable are equal).



Download English Version:

https://daneshyari.com/en/article/6863016

Download Persian Version:

https://daneshyari.com/article/6863016

Daneshyari.com

https://daneshyari.com/en/article/6863016
https://daneshyari.com/article/6863016
https://daneshyari.com

