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This paper considers the delay-dependent stability of memristive complex-valued neural networks
(MCVNNSs). A novel linear mapping function is presented to transform the complex-valued system
into the real-valued system. Under such mapping function, both continuous-time and discrete-time
MCVNNS s are analyzed in this paper. Firstly, when activation functions are continuous but not Lipschitz
continuous, an extended matrix inequality is proved to ensure the stability of continuous-time MCVNNs.
Furthermore, if activation functions are discontinuous, a discontinuous adaptive controller is designed to
acquire its stability by applying Lyapunov-Krasovskii functionals. Secondly, compared with techniques
in continuous-time MCVNNs, the Halanay-type inequality and comparison principle are firstly used to
exploit the dynamical behaviors of discrete-time MCVNNs. Finally, the effectiveness of theoretical results
is illustrated through numerical examples.
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1. Introduction

Theoretically, the memristor as the fourth basic circuit ele-
ment, was firstly postulated by Chua (1971) based on the integral
theory of fundamental circuit in 1971. It has the unique electri-
cal characteristics relative to resistor, capacitor and inductor. In
2008, researchers at HP’s Laboratory implemented the physical
model (Strukov, Snider, Stewart, & Williams, 2008) of the mem-
ristor, which means that it opens up new horizons for further
development on circuit design. In 2009, the adaptive behavior of
cells, which was similar to the property of the memristor, was
proposed by means of the single-celled amoeba experiment (Per-
shin, Fontaine, & Ventra, 2009). Based on the experimental verifi-
cation, more research results show that artificial neural networks
with variable weights constructed by the memristor can better
simulate human brain like associative memory functions. Further,
these experiments check that memristive neural networks have
the following advantages. As an analog element, memristor can
realize the continuous update of synaptic weights and structure
huge-scale integrated neural networks. In addition, the memristive
neural network has larger storage capacities, stronger learning and
memory abilities, and better information processing abilities in
virtue of combining the advantages of memristor and cross array.
Hence, in recent years, the study on the memristive neural network
has become a hot spot in many fields (Corinto, Ascoli, & Gilli, 2011;
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Guo, Yang, & Wang, 2016; Wen, Zeng, & Huang, 2013; Yang, Guo,
& Wang, 2015; Yang & Ho, 2016; Zhang, Shen, Yin, & Sun, 2013).
On the one hand, the in-depth analysis and study on complex-
valued neural networks (CNNs) have been carried out in the
complex plane, due to their potential engineering applications.
Compared with real-valued neural networks (RNNs), the CNNs
provide natural and reasonable ways to keep the physical charac-
teristics of primitive problems in the complex domain (Xia & Feng,
2006). However, as an extension of RNNs, the main challenges we
face are how to address the problems of complex-valued states and
connection weights, especially complex-valued activation func-
tions. Based on the Liouville’s theorem, the activation function
in CNNs cannot be both bounded and analytic while it is usually
chosen to be a smooth bounded function in RNNs. Nowadays, the
main approaches to analyze complex-valued activation functions
can be categorized two ways. One is to separate it into the real
and imaginary components (Hu & Wang, 2015; Nagamani & Ra-
masamy, 2015; Wang, Duan, Huang, Wang, & Li, 2016; Zhou &
Song, 2013). The other way does not need to divide into two parts
but should satisfy the Lipschitz continuity (Fang & Sun, 2014).
However, these two methods have their own shortcomings which
lead to the limitation of activation functions. For example, some
complex-valued activation functions cannot be divided into two
parts, and some are discontinuous. As is known to us, when the
system is discontinuous, it is difficult to ensure the stability of
systems (Abdurahman & Jiang, 2016; Aubin & Cellina, 1984; Aubin
& Frankowska, 1990; Cai & Huang, 2017; Filippov, 1988; Wang, Li,
& Huang, 2014). Therefore, combining with these cases, a novel
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mapping function is proposed to handle these problems and relax
restrictions of complex-valued activation functions in this paper.
Furthermore, if the activation function is discontinuous, a discon-
tinuous adaptive controller is further designed to stabilize the
MCVNNs.

On the other hand, it is clear that the delay-dependent
stability of neural networks (NNs) is less conservative than delay-
independent ones, since time-delay phenomena are often encoun-
tered in various practical situations and may have negative effect
on system stability (Cao, Li, & Han, 2006; Liu, Wang, Tang, & Qiu,
2017; Mu & Chen, 2016; Park, Kwon, Park, Lee, & Cha, 2015;
Seuret & Gouaisbaut, 2013; Seuret, Gouaisbaut, & Fridman, 2013;
Xu, Lam, Ho, & Zou, 2005; Yang, Cao, & Lu, 2013; Yang, Guo, &
Wang, 2016). Meanwhile, a series of results have been acquired
on the delay-dependent stability of continuous-time NNs via the
Lyapunov-Krasovskii functionals and linear matrix inequalities
(LMIs). Overall, the major challenges are how to extend a less
restrictive inequality and slack variables than ever before. In this
paper, an extended matrix inequality is proved to guarantee the
delay-dependent stability of continuous-time MCVNNs.

Actually, in many real-world applications, discrete-time coun-
terparts of NNs are more applicable to image processing, pattern
recognition and computer simulation. A multitude of numeri-
cal schemes can be used to obtain discrete-time counterparts of
continuous-type NNs, for instance, Euler scheme, Runge-Kutta
scheme. For the discrete case, the structure, properties and dy-
namics of NNs have been changed greatly. Nowadays, discrete-
time NNs have been in the spotlight, and some results have been
obtained based on summation inequalities and Lyapunov func-
tions (Seuret, Gouaisbaut, & Fridman, 2015; Shao & Han, 2011;
Wu & Zeng, 2012; Zhang, He, Jiang, Wang, & Wu, 2017; Zhang,
Wang, & Liu, 2014). However, there is little work on the discrete-
time MCVNNSs since its complexity and discontinuity. Hence, the
dynamical behaviors of discrete-time MCVNNs are also analyzed in
this article. Compared with continuous-time MCVNNSs, some new
methods and conclusions are given to fill the gap of discrete-time
MCVNNs.

Motivated by the above discussion, the aim of this paper is
to consider the delay-dependent stability of continuous-time and
discrete-time MCVNNSs, and deal with the above-mentioned prob-
lems. The main contributions of this paper include four aspects:

(1) Different from previous works (Fang & Sun, 2014; Hu &
Wang, 2015; Nagamani & Ramasamy, 2015; Wang et al., 2016;
Zhou & Song, 2013), a novel linear mapping function is constructed
to address the problem of MCVNNSs in the complex plane, no matter
whether complex-valued activation functions can be divided into
the real and imaginary parts.

(2) In contrast with Seuret et al., (2013, 2015), two extended
matrix inequalities with less restriction are given to guarantee the
delay-dependent stability of both continuous-time and discrete-
time MCVNNs via the Lyapunov-Krasovskii functional. Mean-
while, the assumption of complex-valued activation functions in
MCVNN:S is less conservative than Abdurahman & Jiang (2016), Cai
& Huang (2017), Corinto et al. (2011) and Zhang et al. (2013).

(3) When activation functions are discontinuous, it is difficult
to ensure the stability of the system, and a discontinuous adap-
tive controller is further designed to stabilize the continuous-time
MCVNNS.

(4) Different from the methods of continuous-time cases, the
Halanay-type inequality and comparison principle are firstly in-
troduced to investigate dynamical behaviors of discrete-time
MCVNNs.

The paper is organized as follows. Section 2 gives model de-
scription and preliminaries. In Section 3, sufficient conditions are
obtained to ensure that the equilibrium point of the continuous-
time system uniquely exists and is globally asymptotically stable.

Similarly, based on a discontinuous adaptive controller, we show
more solicitude on the case of activation functions which are
discontinuous and also obtain its stability. The major objectives are
to make the qualitative analysis on the discrete-time MCVNNs in
Section 4. In Section 5, some examples with numerical simulation
are given to demonstrate the effectiveness of the obtained results.
The conclusions are given in Section 6.

Notation. Throughout this paper, let Z, Z*, R, C denote the set
of all integers, positive integers, real numbers and complex num-
bers, respectively. R" and C" denote the n-dimensional Euclidean
and unitary space. R™" and C™" are the set of n x n real matrix
and the set of n x n complex matrix. C = C([—1,, 0], R") denotes
function mapping [—13, 0] into R". DT denotes the transpose of
matrix D € R™", E denotes the identity matrix. i = +/—1 rep-
resents the imaginary unit. || - || represents the Euclidean 2-norm.
Izellc = maX,cpo. ey {12t —=s)I1}. 1Zallc = MaXcio, {I12(n—p)I1)-
For any vectors x,y € R",x < yrepresentsx; < y;(i=1,...,n).
Forc,d € Z and ¢ < d, we denote the discrete interval [c, d]; =
{c,ce+1,...,d—1,d}.Ifd = oo, then [c,00), = {c,c+ 1,...}.
Besides, [r] denotes the integer part of the real number r.

2. Model description and preliminaries

In this section, a class of memristor-based neural networks
(MNNs) are introduced systematically. By Kirchhoff’s current law,
the ith subsystem of MNNs can be written as

Di(t) = —divi(t +Za,, i ))fi(vi(t

+Zb'f vi(t
j=1

x filvi(t = 7(£))) + ui, t > 0, (1)

wherei e £ = {1, 2, ..., n}, ncorresponds to the number of units
in the neural network; v;(t) is the voltage of the capacitor ¢;; d; > 0
represents the neuron self-inhibitions; fj(vj(t)), fi(vj(t — ©(t))) are
the functions without and with time delays; z(t) corresponds to
the time delay and 0 < 11 < 7(t) < 13; u; denotes the external
input or bias, a;(-), b;j(-) are the memristor-based weights given
by

m“
byj(vi(t)) = ?U X sgn;;

M
a;j(vi(t)) = ? X sgn;, iis
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1, i#],

58N = {—1, i=j,

where 9 is the memristor between the feedback function f;(v;(t))

and vi(t); ifﬁ,-j is the memristor between the feedback function
filvi(t = =(¢))) and vy(t).

In this article, we will consider complex-valued networks due to
its extensive applications. In the complex domain, complex-valued
states, connection weights, and activation functions exist in the
MNNs, and MCVNNs with time delays can be written as follows
from (1)

a(t) = —diz(t) + ) ay@()fi(z(0) + Y by(zi(t))
j=1 j=1
x fi(zi(t — T(6))) + uj. (2)

Eq. (2) also can be rewritten as the following matrix form

—Dz(t) + A(z(£))f (z(¢)) + B(z(6))f (z(t — =(t))) + u,
= F(t, z(t), z(t — z(¢))), (3)
where z(t) = (z1(t), zo(t), . .., zo(t))T € C"; D = diag(d;, do, . ..,
dn)' € R A(z(t)) = (au(zl (£))) € C™", B(z(t)) = (by(z(t))) €
Cmf() = (). Hl) - fal D) 2 C" — €™ and u = (uy, u,
., up)T e C". Asiswell known, based on the feature of memristor

2(t)
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