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a b s t r a c t

This paper investigates O(t−α)-synchronization and adaptive Mittag-Leffler synchronization for the
fractional-order memristive neural networks with delays and discontinuous neuron activations. Firstly,
based on the framework of Filippov solution and differential inclusion theory, using a Razumikhin-type
method, some sufficient conditions ensuring the global O(t−α)-synchronization of considered networks
are established via a linear-type discontinuous control. Next, a new fractional differential inequality
is established and two new discontinuous adaptive controller is designed to achieve Mittag-Leffler
synchronization between the drive system and the response systems using this inequality. Finally, two
numerical simulations are given to show the effectiveness of the theoretical results. Our approach and
theoretical results have a leading significance in the design of synchronized fractional-order memristive
neural networks circuits involving discontinuous activations and time-varying delays.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The fractional calculus has become a great research topic in
recent years due to its many applications in the field of physics and
engineering (Kilbas, Srivastava, & Trujillo, 2006; Podlubny, 1999).
In fact, many of the real world objects are generally identified
and described by the fractional-order model. This model is more
accurate than the integer-order model. The main advantage of
fractional-order model in comparison with integer-order model
is that a fractional derivative provides an excellent tool in the
description of memory and hereditary properties of various pro-
cesses. In addition, the fractional-order model has more degrees of
freedom and unlimitedmemory (infinite memory). Based on these
features, some researchers have introduced fractional calculus in
neural network models to form a fractional-order neural network
model. Therefore, it is needed to study the dynamics of fractional-
order neural networks. For the past few years, the analysis of
fractional-order neural networks has become an increasing inter-
est and growing area of research, and the dynamical behaviors of
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fractional-order neural networks, such as synchronization, stabil-
ity, and state estimation have been discussed in Refs. Chen and
Chen (2015a, 2015b, 2016), Qi, Li, and Huang (2014), Rakkiyappan,
Velmurugan, and Cao (2015), Rakkiyappan, Velmurugan, Rihan,
and Lakshmanan (2016), Yan, Cao, and Liang (2016) and Yang and
DWC (2016) and references therein.

Memristor is a contraction of memory resistor, which is a new
nonlinear electric circuit element, that describes the relationship
between electric charge and magnetic flux. The memristors were
first introduced theoretically by Chua (Chua, 1971) and it has
been realized practically by the research team of HP Lab in 2008
(Strukov, Snider, Stewart, & Williams, 2008). Memristor is a two-
terminal element with variable resistance and its value is not
unique, which depends on the magnitude and polarity of the volt-
age applied to it and the length of the time that the voltage has been
applied. When the voltage is turned off, the memristor remembers
its most recent value until next time it is turned on. Therefore,
memristors have been used for nonvolatile memory storage. Based
on the memristors, a new type of neural network model, called
the memristor-based neural networks, has been introduced in the
literature and dynamical behaviors have been investigated (see
Abdurahman and Jiang (2016), Abdurahman, Jiang, and Rahman
(2015), Chandrasekar, Rakkiyappan, Cao, and Lakshmanan (2014),
Chen, Zeng, and Jiang (2014a, b, c), Hu and Wang (2010) and
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Wang, Li, Peng, Xiao, and Yang (2014) and references therein). In
addition, the analysis of memristor-based neural networks is nec-
essary on account of its potential applications in next generation
computer and powerful brain-like neural computer (Chua, 1971;
Wang, Chen, Xi, Li, & Dimitrov, 2009).

As is well known, the chaos synchronization has received great
attention in the investigation of neural networks since its success-
ful applications in a variety of fields. Therefore, the synchronization
phenomenon of neural networks is an important issue that is
explored by many researchers (see, e.g., Refs. Abdurahman and
Jiang (2016), Abdurahman et al. (2015), Chandrasekar et al. (2014),
Li and Cao (2015), Mathiyalagan, Park, and Sakthivel (2015), Shen,
Wu, and Park (2015) and Stamova (2014)). Also, the synchroniza-
tion of fractional-order dynamical systems becomes a stimulating
and inspiring problem due to its potential applications in ranging
from computer science to biology, from physics to engineering,
even from economics to brain science, secure communication, and
control processing (see Refs. Bao, Park, and Cao (2015, 2016), Vel-
murugan and Rakkiyappan (2016) and Velmurugan, Rakkiyappan,
and Cao (2016)).

Time delays, especially time-varying delays, are unavoidably
encountered in the signal transmission among the neurons, which
will affect the stability of neural networks and may lead to
some complex dynamic behaviors (see Ahn, Shi, and Wu (2015),
Saravanakumar, Ali, Ahn, Karimi, and Shi (2017) and references
therein). In Chen and Chen (2015a) we have studied global O(t−α)
stability and global asymptotical periodicity for a non-autonomous
fractional-order neural networks with time-varying delays by a
Razumikhin-type method (see Chen and Chen (2015b)). In Bao
et al. (2015) Bao et al. discussed the adaptive synchronization
of fractional-order memristor-based neural networks with time
delay by combining the adaptive control, linear delay feedback
control, and a fractional-order inequality. The results on expo-
nential synchronization of memristor-based neural networks with
delay and discontinuous neuron activations are established via
two types of discontinuous controls: linear feedback control and
adaptive control in Abdurahman and Jiang (2016). However, to the
best of our knowledge, there are very few or even no results on
the O(t−α)-synchronization and Mittag-Leffler synchronization of
fractional-order memristive neural networks with delay and dis-
continuous neuron activations. Motivated by the previous works
and background, the main purpose of this paper is to fill this gap.
The present paper at least have four highlights as follows: (1) Two
new types of synchronization,O(t−α)-synchronization andMittag-
Leffler synchronization, are proposed, which can better describe
synchronization feature of fractional-order systems. (2) Some suf-
ficient conditions ensuring the global O(t−α)-synchronization of
considered networks are established via a linear-type discontin-
uous control. (3) A new fractional differential inequality is es-
tablished and two new discontinuous adaptive controllers are
designed to achieve Mittag-Leffler synchronization between the
drive system and the response systems using this inequality. (4)
The works are new that fill some gap of the existing works. (5) Our
results generalize and improve those of existing literature.

The rest of the paper is organized as follows. In Section 2, the
drive–response systems are introduced. In addition, some assump-
tions and definitions together with some useful lemmas needed
in this paper are presented. In Section 3, we devote to investi-
gating the O(t−α)-synchronization between the drive system and
the response systems by designing a linear-type discontinuous
controller. In Section 4, a new discontinuous feedback controller
is designed to achieve Mittag-Leffler synchronization between
the drive system and the response systems. In Section 5, two
numerical examples and their simulations are given to illustrate

the effectiveness of the obtained results. Finally, some general
conclusions are drawn in Section 6.

2. Preliminaries

In order to describe our model, we will recall some definitions
of fractional calculation.

The fractional integral with order α for a function f (t) is defined
as

RL
t0 D

−α
t f (t) =

1
Γ (α)

∫ t

t0

(t − s)α−1f (s)ds

where t ≥ t0 and α > 0, Γ (·) is the gamma function, that is

Γ (α) =

∫
∞

0
tα−1e−tdt.

The Riemann–Liouville derivative of fractional with order α of
function f (t) is given as

RL
t0 D

α
t f (t) =

dn

dtn
D−(n−α)
t0,t f (t)

=
1

Γ (n − α)
dn

dtn

∫ t

t0

f (s)
(t − s)α−n+1 ds.

The Caputo’s fractional derivative with order α for a function
f ∈ Cn+1([t0,+∞), R) is defined by

Dαt0 f (t) =
1

Γ (n − α)

∫ t

t0

f (n)(s)
(t − s)α−n+1 ds

where t > t0 and n is a positive integer such that n − 1 < α < n.
In this paper, we consider a class of delayed fractional-order

memristive neural network (DFMNN) with discontinuous activa-
tion functions described by the following equation:

Dαt0xi(t) = −ci(xi(t))xi(t) +

n∑
j=1

aij(xj(t))fj(xj(t))

+

n∑
j=1

bij(xj(t − τij(t)))gj(xj(t − τij(t))) + Ii,

(2.1)

where i = 1, . . . , n, t ≥ 0 0 < α < 1, n corresponds to the
number of units in a neural network, xi(t) denotes the state variable
associatedwith the ith neuron, Ii denotes the external input, which
is a constant, τij(t) is a nonnegative function representing the finite
speed of the axonal signal transmission in the time t , fi(·) and gi(·)
are all the nonlinear activation function, that can be discontinu-
ous; ci(xi), aij(xj) and bij(xj) (i, j = 1, . . . , n) are, respectively, the
memristor-based connection weights and those associated with
time delays, that are given by

aij(ξ ) =

⎧⎪⎨⎪⎩
âij, |ξ | > T a

j ,

unsureness, |ξ | = T a
j ,

ǎij, |ξ | < T a
j ,

(2.2)

bij(ξ ) =

⎧⎪⎨⎪⎩
b̂ij, |ξ | > T b

j ,

unsureness, |ξ | = T b
j ,

b̌ij, |ξ | < T b
j ,

(2.3)

and

ci(ξ ) =

⎧⎪⎨⎪⎩
ĉi, |ξ | > T c

j ,

unsureness, |ξ | = T c
j ,

či, |ξ | < T c
j ,

(2.4)
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