
Neural Networks 100 (2018) 25–38

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Merging weighted SVMs for parallel incremental learning
Lei Zhu a, Kazushi Ikeda b, Shaoning Pang a,*, Tao Ban c, Abdolhossein Sarrafzadeh a

a Unitec Institute of Technology, New Zealand
b NARA Institute of Science and Technology, Japan
c National Institute of Information and Communications Technology, Japan

a r t i c l e i n f o

Article history:
Received 4 September 2017
Received in revised form 21 November
2017
Accepted 15 January 2018
Available online 2 February 2018

Keywords:
Incremental learning
Parallel learning
Parallel incremental learning
Knowledge merging
Extreme support vector machine (ESVM)
Weighted ESVM (wESVM)

a b s t r a c t

Parallel incremental learning is an effective approach for rapidly processing large scale data streams,
where parallel and incremental learning are often treated as two separate problems and solved one
after another. Incremental learning can be implemented by merging knowledge from incoming data and
parallel learning can be performed by merging knowledge from simultaneous learners. We propose to
simultaneously solve the two learning problems with a single process of knowledge merging, and we
propose parallel incremental wESVM (weighted Extreme Support VectorMachine) to do so. Here, wESVM
is reformulated such that knowledge from subsets of training data can be merged via simple matrix
addition. As such, the proposed algorithm is able to conduct parallel incremental learning by merging
knowledge over data slices arriving at each incremental stage. Both theoretical and experimental studies
show the equivalence of the proposed algorithm to batch wESVM in terms of learning effectiveness. In
particular, the algorithm demonstrates desired scalability and clear speed advantages to batch retraining.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Incremental and parallel are two appeal capabilities for ma-
chine learning algorithms to accommodate data from real world
applications. Incremental learning (Joshi & Kulkarni, 2012) ad-
dresses streaming data by constructing a learning model that is
updated continuously in response to newly arrived samples. Hou
and Zhou (2016) introduce interesting variants of incremental
learning, in which features, instead of data, are added and re-
moved during the learning procedure. To solve the computational
problems posed by large data scale, parallel learning (Upadhyaya,
2013) distributes the computational efforts among multiple nodes
within a cloud or cluster to speed up the calculation. In the work
of Zhao, Liang, and Yang (2012), SVM training is parallelized by an
ensemble technique inwhichmultiple SVMs are trained in parallel,
given different subsets of training data, and the classification is
made by ensembling these SVMs bymajority vote. Caruana, Li, and
Qi (2011) parallelize the classic Sequential Minimal Optimization
(SMO) algorithm, in which each computational nodes only works
on a subset of the complete optimization. With the rise of BigData,
data becomeboth large scale and streaming. Interest on developing
algorithms that are both parallel and incremental is increasing, and
this interest leads to the parallel incremental algorithm proposed
in this paper.

* Corresponding author.
E-mail address: ppang@unitec.ac.nz (S. Pang).

To developing a parallel incremental algorithm, three straight-
forward route maps are considered: (a) parallelize an existing
incremental algorithm, for example Tsianos and Rabbat (2016)
recently proposed a gossip-based approach that parallelizes online
prediction and stochastic optimization; (b) renovate an existing
parallel algorithm to be incremental, but few research study can
be found in this category; and (c) derive a parallel incremental
algorithm from scratch. In this category, existing works normally
treat incremental and parallel learning as two separate problems.
One either first parallelizes learning then designs the incremental
rule (e.g., Böse, Andrzejak, and Högqvist (2010), Yue, Fang, Wang,
Li, and Liu (2015), Zhao et al. (2016)), or the other way around (e.g.,
Chen and Huo (2016), Doan, Do, and Poulet (2013), Xu and Yun
(2015), Yoo and Boulware (2014)).

Alternatively, we achieve parallel and incremental learning by
proposing a novel knowledge merging approach, and apply the
approach to weighted Extreme Support Vector Machine (wESVM)
for parallel incremental learning. This approach enablesmerging of
wESVMs on subsets of data into one model whose learning result
equals that from the whole dataset. In doing this, we derive a new
formula of wESVM in which knowledge is represented as a set of
class-wised matrices, and we prove that the merging of wESVMs
can be performed through simplematrix addition. Through knowl-
edge merging, parallel learning can be implemented by letting
multiple nodes learn simultaneously from data slices, then com-
bine the knowledge obtained. Additionally, incremental learning
can be carried out by adding up knowledge acquired at different

https://doi.org/10.1016/j.neunet.2018.01.001
0893-6080/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2018.01.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2018.01.001&domain=pdf
mailto:ppang@unitec.ac.nz
https://doi.org/10.1016/j.neunet.2018.01.001


26 L. Zhu et al. / Neural Networks 100 (2018) 25–38

incremental stages. Thus, wESVM is transformedwithout informa-
tion lost for parallel incremental learning.

The rest of this paper is organized as follows. Section 2 in-
troduces preliminary work including MapReduce and the batch
algorithms that our work is based on. In Section 3, we implement
the idea of knowledge merging and develop the proposed parallel
incremental wESVM. The proposed algorithm is evaluated in Sec-
tion 4, and we conclude our work in Section 5.

2. Preliminary

2.1. LPSVM

Given a training set S = {(x1, y1), . . . , (xn, yn)}, having in-
stance matrix X =

[
x1 x2 · · · xn

]′
∈ Rn×d and label vector

Y =
[
y1 y2 · · · yn

]′
∈ {+1, −1}n×1. A classic Support Vector

Machine (SVM) (Vapnik, 1995) solves the following optimization

min C
n∑

i=1

ξi +
∥w∥

2

2

s.t. yi(x′

iw + b) + ξi ≥ 1
ξi ≥ 0 ∀i ∈ {1, . . . , n} ,

(1)

in order to learn a separation plane

x′w + b = 0, (2)

which is located in the midway point of two bounding planes

x′w + b = +1
x′w + b = −1.

(3)

Training samples from two classes are bounded by (3) with some
non-negative slacks ξi

x′

iw + b + ξi ≥ +1 for yi = +1
x′

iw + b − ξi ≤ −1 for yi = −1.
(4)

2
∥w∥

is the distance between bounding planes in (3), also known
as margin in literature (Yamasaki & Ikeda, 2005). In optimization
(1), the margin is maximized by minimizing ∥w∥2

2 , the total slack
is minimized byminimizing

∑n
i=1ξi, and the importance of margin

maximization and total slacks minimization is balanced by param-
eter C (Cauwenberghs & Poggio, 2000; Karasuyama & Takeuchi,
2010).

Unlike classic SVM (Vapnik, 1995), Linear Proximal SVM
(LPSVM) simplifies the above binary classification as an regular-
ized least square problem, thus the training of LPSVM becomes
more efficient (Fung & Mangasarian, 2001) than the classic SVM.
Specifically, LPSVM solves the following optimization

min
1
2
(∥w∥

2
+ b2) +

C
2

∥ξ∥2

s.t. D(Xw − eb) + ξ = e,
(5)

where ξ is a n × 1 slack vector, n × n diagonal matrix D = diag(Y )
represents class labels and e is a n × 1 vector of ones. Through
solving (5), LPSVM obtains a separating plane

x′w − b = 0 (6)

which lies in the middle of two proximal planes

x′w − b = +1
x′w − b = −1.

(7)

As compared to the classic SVM optimization (1) which has
inequality constraint, LPSVM applies an equality constraint in (5).

As a result, the planes (7) no longer bound training samples, but be-
come the proximal planes with data points of each class clustered
around. In LPSVM optimization (5), the margin between proximal
planes is maximized by minimizing term (∥w∥

2
+ b2), the total

slack isminimized byminimizing ∥ξ∥2 and the importance of these
two objectives are balanced by parameter C .

The solution of LPSVM can be given explicitly as[
w
b

]
=

[
I
C

+

[
X ′

−e′

] [
X −e

]]−1 [
X ′De
−e′De

]
. (8)

For the derivation of (8), please refer to the work of Fung and
Mangasarian (2001). Let F =

[
X −e

]
, we have (8) simplified as[

w
b

]
= (

I
C

+ F ′F )−1F ′De, (9)

where I is a (d + 1) × (d + 1) identity matrix.
The steps of batch LPSVM training is summarized in Algo-

rithm 1.

Algorithm 1 LPSVM

Input: X ∈ Rn×d, Y ∈ {+1, −1}n×1, C ∈ R+.

Output:
[
w
b

]
.

1: Generate e ∈ Rn×1;
2: Generate F , as F =

[
X −e

]
;

3: Transform Y into D, as D = diag(Y );
4: Generate I ∈ R(d+1)×(d+1);

5: Compute
[
w
b

]
as (9).

Once
[
w
b

]
is computed, the classification decision is made by

f (x) = x′w − b

=
[
x′

−1
] [

w
b

] {
> 0 then y = +1
< 0 then y = −1.

(10)

2.2. ESVM

Extreme SVM (ESVM) (Liu, He, & Shi, 2008) is essentially an
LPSVM in Extreme Learning Machine (ELM) (Huang, Zhu, & Siew,
2004, 2006) feature space. For nonlinear classification, ESVM intro-
duces a nonlinearmapping functionΦ(x), throughwhich d dimen-
sional input samples are mapped explicitly into a d̃ dimensional
feature space, so that an LPSVM linear separation can be conducted
in feature space to achieve nonlinear classification of input space.

The mapping Φ(x) : Rd
→ Rd̃ is performed as

Φ(x) = G(Wx1)

=(g(
d∑

i=1

W1ixi + W1(d+1)), . . . ,

g(
d∑

i=1

Wd̃ixi + Wd̃(d+1)))
′.

(11)

where x ∈ Rd×1 is the sample of input space, x1 = [x′, 1]′,
W ∈ Rd̃×(d+1) is a weighting matrix whose elements are randomly
generated andΦ(x) is the projection of x inRd̃. Here,G(·) stands for
a mapping function that projects each element zij of input matrix
Z into corresponding g(zij) of output matrix G(Z), where g(·) is an
activation function specified by user such as sigmoidal function.
From the view point of ELM, Φ(x) can be seen as the output of x



Download	English	Version:

https://daneshyari.com/en/article/6863030

Download	Persian	Version:

https://daneshyari.com/article/6863030

Daneshyari.com

https://daneshyari.com/en/article/6863030
https://daneshyari.com/article/6863030
https://daneshyari.com/

