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a b s t r a c t

The scalability of low-rank representation (LRR) to large-scale data is still a major research issue, because
it is extremely time-consuming to solve singular value decomposition (SVD) in each optimization iteration
especially for large matrices. Several methods were proposed to speed up LRR, but they are still computa-
tionally heavy, and the overall representation results were also found degenerated. In this paper, a novel
method, called accelerated LRR (ALRR) is proposed for large-scale data. The proposed acceleratedmethod
integrates matrix factorization with nuclear-normminimization to find a low-rank representation. In our
proposedmethod, the large squarematrix of representation coefficients is transformed into a significantly
smaller square matrix, on which SVD can be efficiently implemented. The size of the transformed matrix
is not related to the number of data points and the optimization of ALRR is linear with the number of data
points. The proposedALRR is convex, accurate, robust, and efficient for large-scale data. In this paper, ALRR
is comparedwith state-of-the-art in subspace clustering and semi-supervised classification on real image
datasets. The obtained results verify the effectiveness and superiority of the proposed ALRR method.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Datasets from different areas such as computer vision, machine
learning, and data mining, are generally organized into a ma-
trix form. The corresponding matrices are often of low-rank (Fan
& Chow, 2017b). The low-rank assumption and model provides
considerable advantages for storing, processing, and analyzing.
Representative low-rank techniques can be found in principle
component analysis (PCA) (Cand, Li, Ma, & Wright, 2011; Jolliffe,
2002), dimensionality reduction (Fan, Chow, Zhao, & Ho, 2017),
matrix completion (LRMC) (Cands & Recht, 2009; Fan & Cheng,
2018; Fan & Chow, 2017a, c; Wen, Yin, & Zhang, 2012), and low-
rank representation (LRR) (Liu et al., 2013; Liu, Wang, Han, Fan, &
Luo, 2017; Liu, Xu, Tang, Liu, & Yan, 2016; Peng, Lu, &Wang, 2015;
Vidal & Favaro, 2014; Zhang, Yan, & Zhao, 2014). LRR is to represent
a set of data points as the multiplication of a dictionary matrix and
a low-rank coefficients matrix. In LRR, nuclear-normminimization
is used for rank-minimization, and singular value thresholding (Liu
et al., 2013; Lu, Zhu, Xu, Yan, & Lin, 2015) is performed iteratively.
Compared with PCA, which is a single-subspace method, LRR is
able to segmentmultiple subspaces (Tang et al., 2016) because one
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data point can be effectively represented by the data points from
a common subspace. LRR has been applied to subspace cluster-
ing (Kriegel, Kröger, & Zimek, 2009; Nie & Huang, 2016; Parsons,
Haque, & Liu, 2004; Sim, Gopalkrishnan, Zimek, & Cong, 2013; Vi-
dal, 2011; Zhu, Zhu, Hu, Zhang, & Zuo, 2017), motion segmentation
(Panagiotakis, Pelekis, Kopanakis, Ramasso, & Theodoridis, 2012),
and image denoising. Another counterpart of LRR is sparse repre-
sentation (Elhamifar & Vidal, 2013; Fan & Chow, 2017d; Zhu, Zhu,
Wang, Zuo, &Hu, 2017; Zhu, Zuo, Zhang,Hu, & Shiu, 2015), inwhich
the coefficientsmatrix is sparse. Sparse representationwas also ap-
plied to many problems such as subspace clustering (SSC) (Elham-
ifar & Vidal, 2013). Both LRR and SSC are robust to sparse noises
and outliers (Elhamifar & Vidal, 2013; Gong, 2017; Liu et al., 2013).
Many extensions of LRR and SSC have recently been proposed
to improve performance (Liu & Yan, 2011; Patel & Vidal, 2014;
Wang, Xu, & Leng, 2013; Xiao, Tan, Xu, & Dong, 2016). For example,
latent LRR (Liu & Yan, 2011) was proposed to solve the problem
when the observations are insufficient and/or grossly corrupted.
Low-rank sparse subspace clustering (LRSSC) (Wang et al., 2013)
was proposed to obtain a simultaneously low-rank and sparse
coefficients matrix for clustering. Kernel SSC (Patel, Hien Van, &
Vidal, 2015; Patel & Vidal, 2014) and robust kernel LRR (Xiao, Tan
et al., 2016) were proposed for nonlinear subspace clustering.

It is important to note that LRR is rather computationally ex-
pensive making it unable to cope with large-scale data, for in-
stance more than thousands of data points (Zhang, Sun, Liu, & Ma,
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2014). The computational problem of LRR stemmed from the basic
procedures of performing singular value decomposition (SVD) in
each iteration, and SVD iswell-known to be time-consumingwhen
handling largematrix. To solve this problem, truncated SVD, rather
than full SVD, can be used. But truncated SVD is still computation-
ally expensive for large matrix. Recently, in Shen and Li (2016),
instead of nuclear-normminimization, matrix factorization is pro-
posed to solve LRR. The low-rank coefficients matrix is replaced by
the multiplication of two thin matrices that are to be optimized
using Frobenius-norm minimization. The method is non-convex
and hence called non-convex LRR (NLRR). As NLRR replaces SVD
with matrix multiplication, it is considerably efficient compared
with LRR. In Xiao, Li, Xu, and Tao (2015), a method called fast LRR
(FaLRR) was proposed for large-scale data. FaLRR also replaces the
coefficients matrix by the multiplication of two matrices, which
include a fixed matrix obtained by truncated SVD of the data
matrix, and anothermatrix that is to be optimized bynuclear-norm
minimization. FaLRR converts the nuclear-norm minimization of
a large and square matrix into the nuclear-norm minimization
of a large but thin matrix. As a result, the computational cost
is significantly reduced. Although NLRR and FaLRR have become
more computationally feasible for handling large-scale data, their
final results, i.e., the effectiveness of the representation coeffi-
cients, are regressed compared to those of LRR and SSC. This is
possibly due to the following reasons. First, NLRR is non-convex
andhencemay suffer from localminima. Second, FaLRR is unable to
exactly handle entry-wise or/and column-wise sparse corruptions,
which will be discussed in later session of this paper. At last, the
numbers of unknown variables to be optimized for the coefficients
matrices in NLRR and FaLRR are relatively large leading to large
complexities of the representation models. Despite all the above-
mentioned, improving the computational efficiency of low-rank
representation is still an important and possible task.

In this paper, we propose a novelmethod called accelerated LRR
(ALRR) to improve the efficiency and accuracy of low-rank repre-
sentation. Themain idea of ALRR is to integratematrix factorization
with nuclear-norm minimization. Specifically, ALRR replaces the
representation coefficients matrix by the multiplication of three
matrices, of which the leftmost one is a thin matrix, the middle
one is a small square matrix, and the rightmost one is a short
matrix. Nuclear-normminimization is implemented on themiddle
matrix whose size is not related to the number of data points.
Therefore, the computation of ALRR is substantially faster than LRR.
In addition, ALRR is robust to noises and outliers. In this study,
ALRR is compared with SSC, LRR, NLRR, and FaLRR for subspace
clustering and semi-supervised classification (Belkin, Niyogi, &
Sindhwani, 2006; Gong et al., 2015; Gong, Tao, Liu, Liu, & Yang,
2017; Gong et al., 2016; Zhu, Ghahramani, & Lafferty, 2003) on the
Extended Yale face dataset B (Kuang-Chih, Ho, & Kriegman, 2005)
and MNIST handwritten digits dataset (Lecun, Bottou, Bengio, &
Haffner, 1998). The experimental results show that ALRR is more
efficient and accurate compared to other methods.

The contributions of this paper are as follows. First, we propose
a new method ALRR for low-rank representation on large-scale
data. ALRR is more efficient than SSC, LRR, NLRR, and FaLRR. ALRR
often provides higher accuracy than other methods do in subspace
clustering and semi-supervised classification. Second, we analyze
the robustness of ALRR and use ALRR to reduce noises of images,
which verify that ALRR is able to handle entry-wise and column-
wise sparse corruptions. Finally, we thoroughly analyze and com-
pare the floating-point operation counts of all related methods. It
is verified that the computational complexity of ALRR is the lowest
among the studied methods.

The remaining content of this paper are organized as follows.
Section 2 gives the related work and the corresponding discus-
sions. Section 3 elaborates the proposed method ALRR. Section 4
consists of the case studies of imagedenoising, subspace clustering,
and classification. Section 5 is the conclusion of this study.

2. Related work and discussion

SSC. Denoting a dataset of m features and n samples drawn
from multiple subspaces by X ∈ Rm×n, sparse subspace clustering
(SSC) (Elhamifar & Vidal, 2013) first considers the following sparse
regression problem:

min
C,E
∥C∥1 + λ∥E∥1,

s.t. X = XC + E, diag(C) = 0
(1)

where C ∈ Rn×n is the representation coefficients matrix, E ∈
Rm×n is the representation errors matrix, and ∥ · ∥1 is the ℓ1 norm
of matrix to obtain entry-wise sparsity. The affinity matrix is given
as A = |C | + |C |T and used for spectral clustering (Li, Xia, Shan, &
Liu, 2015; Vidal, 2011) to divide the data into different groups.

LRR. Low-rank representation (LRR) (Liu et al., 2013) solves the
following optimization problem:

min
C,E
∥C∥∗ + λ∥E∥21,

s.t. X = XC + E.
(2)

In (2), ∥ · ∥∗ is the nuclear-norm of matrix, i.e. ∥C∥∗ =
∑min(m,n)

i=1
σi(C), where σi(C) is the ith singular value of C . ∥ · ∥21 is the ℓ21
norm of matrix to obtain column-wise sparsity. An affinity matrix

is formed by [A]ij = ([UΣ
1
2 ]ij)q, where U and Σ are given by the

skinny SVD of C = UΣV T and q can be chosen from {2, 4, 6, 8, 10}
to enhance the sparsity of A. The affinity matrix A is used for
spectral clustering (Li et al., 2015; Lu, Yan, & Lin, 2016; Vidal,
2011) to segment different subspaces of X . In recent years, a few
extensions of LRR and SSChave beenproposed (Fan&Chow, 2017b,
d; Li & Vidal, 2016; Liu & Yan, 2011; Wang et al., 2013; Xiao, Tan
et al., 2016). For instance, in Wang et al. (2013), it was proposed
to construct a simultaneously low-rank and sparse affinity matrix
for subspace clustering. In Xiao, Tan et al. (2016), a robust kernel
LRR (Xiao, Tan et al., 2016) was proposed for nonlinear subspace
clustering with outliers. In Fan and Chow (2017d) and Li and Vidal
(2016), the problem of subspace clustering on incomplete data
was studied. The computational complexity of these extensions is
higher than that of LRR.

NLRR. Non-convex LRR (NLRR) (Shen & Li, 2016) replaces
nuclear-norm minimization with matrix factorization (Shiga &
Mamitsuka, 2015) and solves the following problem:

min
U,V ,E

β

2 ∥X − XUV T
− E∥2F

+
1
2∥U∥

2
F +

1
2∥V∥

2
F + λ∥E∥1,

(3)

where U ∈ Rn×d and V ∈ Rn×d are two thin matrices. The
representation coefficients matrix is given by C = UV T and d is
the pre-defined rank of C . Because of the non-convexity, NLRRmay
suffer from the problem of local minima.

FaLRR. Fast LRR (FaLRR) (Xiao, Li et al., 2015) first solves the
following problem

min
W
∥W∥∗ + λ∥Sd(V T

d D−W )∥21, (4)

and then sets C = VdW and E = XD − XVdW , where W ∈ Rd×n.
In (4), D is a pre-defined matrix, Sd is a diagonal matrix formed by
the largest d singular values of X = USV T , and Vd is formed by the
corresponding right singular vectors. If D is an identity matrix and
d = min(m, n), (4) will be the same as LRR.

However, we find that FaLRR is unable to exactly handle entry-
wise or column-wise sparse corruptions. In Xiao, Li et al. (2015), it
was claimed that ∥Sd(V T

d D−W )∥21 = ∥E∥21. We see that

∥Sd(V T
d D−W )∥21 = ∥UdSd(V T

d D−W )∥21
= ∥UdSdV T

d D− UdSdW∥21 = ∥UdSdV T
d D− XVdW∥21.

(5)
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