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h i g h l i g h t s

• Robust and computationally efficient high-capacity associative memory models.
• Newmodels project the input onto the set of max-plus or min-plus combinations.
• New autoassociative morphological memories obtained by their compositions.
• Excellent performance on problems with a large number of classes and features.
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a b s t r a c t

Autoassociative morphological memories (AMMs) are robust and computationally efficient memory
models with unlimited storage capacity. In this paper, we present the max-plus and min-plus projection
autoassociative morphological memories (PAMMs) as well as their compositions. Briefly, the max-plus
PAMM yields the largest max-plus combination of the stored vectors which is less than or equal to
the input. Dually, the vector recalled by the min-plus PAMM corresponds to the smallest min-plus
combinationwhich is larger than or equal to the input. Apart fromunlimited absolute storage capacity and
one step retrieval, PAMMs and their compositions exhibit an excellent noise tolerance. Furthermore, the
newmemories yielded quite promising results in classification problems with a large number of features
and classes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Associative memories (AMs), which are models inspired by
the human brain ability to store and recall information by
associations, have been extensively investigated since the ad-
vent of Hopfield network in the early 1980s (Hassoun & Watta,
1997; Hopfield, 1982). Besides the biological motivation, associa-
tive memory models have been applied, for instance, for pattern
classification (Chyzhyk & Graña, 2015; Esmi, Sussner, Bustince, &
Fernandez, 2015; Valle & de Souza, 2016; Zhang, Huang, Huang,
& Zhang, 2005), time-series prediction (Sussner & Schuster, 2013;
Valle & Sussner, 2011), image processing and analysis (Grana &
Chyzhyk, 2016; Lechuga-S, Valdiviezo-N, & Urcid, 2014; Valle,
2014a; Valle & de Souza, 2015), and optimization (Hopfield & Tank,
1985; Serpen, 2008).
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An AM model is usually classified as either autoassociative or
heteroassociative (Hassoun & Watta, 1997). An autoassociative
memory, such as the Hopfield network (Hopfield, 1982), is de-
signed for the storage of a finite set of vectors {x1, x2, . . . , xk}. In
contrast, a heteroassociativememory is designed for the storage of
a set of association pairs {(x1, y1), . . . , (xk, yk)}. The bidirectional
associative memory of Kosko is an example of a heteroassociative
memory (Kosko, 1988). In this paper, we focus only on autoasso-
ciative memories.

Desired properties of an autoassociative memory include high
storage capacity, tolerance to noisy or partial inputs, fast retrieval
of a stored item, and few spurious memories (Hassoun & Watta,
1997). Differently from many traditional autoassociative memo-
ries, such as the Hopfield network, the autoassociative morpho-
logical memories (AMMs) introduced by Ritter and Sussner in the
middle 1990s, exhibit unlimited absolute storage capacity and fast
retrieval of a stored vector (Ritter & Sussner, 1996; Ritter, Sussner,
& de Leon, 1998). Moreover, since they are based on lattice op-
erations, they are computationally cheaper than many traditional
autoassociative models. As to the error correction capability, the
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original AMMs exhibit excellent tolerance to either dilative or ero-
sive noise. Real-world applications of AMMs include classification
of schizophrenia patients (Chyzhyk & Graña, 2015), restoration
of historical documents (Lechuga-S et al., 2014; Valdiviezo, Ur-
cid, & Lechuga, 2017), and hyperspectral image analysis (Grana &
Chyzhyk, 2016).

Despite the notable features listed in the previous paragraph,
the AMM models of Ritter and Sussner have a large number of
spurious memories (Ritter & Gader, 2006; Sussner & Valle, 2006a).
In 2014, Valle proposed an AMM, called max-plus projection au-
toassociative morphological memory (max-plus PAMM), which
has less spuriousmemories than the original AMMs (Valle, 2014b).
Briefly, the max-plus PAMM projects the input vector onto the
set of all max-plus combinations of the stored vectors. Like the
original AMMs, the max-plus PAMM exhibits unlimited absolute
storage capacity and fast retrieval of a stored vector. As to the
computational complexity, the max-plus PAMM does not require
synthesizing a synaptic weight matrix. Furthermore, since the
max-plus PAMM has less spurious memories, it exhibits a better
tolerance with respect to dilative noise than the corresponding
original AMM (Valle, 2014b).

In this paper, we present the dual of themax-plus PAMM, called
min-plus PAMM. Also, we introduce four new autoassociative
memories which are obtained by combining the max-plus and
min-plus PAMMs. The new memories models, like the original
AMMs, are all defined in terms of lattice-based operations from
minimax algebra (Cuninghame-Green, 1979, 1995). Therefore,
they belong to the lattice computing (LC) paradigmwhich, accord-
ing to Kaburlasos and Kehagias (2014), Kaburlasos and Papakostas
(2015) and Kaburlasos, Papadakis, and Papakostas (2013), is de-
fined as an evolving collection of tools andmathematical modeling
methodologies with the capacity to process lattice-ordered data
per se, including logic values, numbers, sets, symbols, graphs, etc.
Wewould like to point that the broad class of the fuzzy associative
morphological memories (Sussner & Valle, 2008; Valle & Sussner,
2011), the theta-fuzzy associative memories (Esmi et al., 2015),
and dendritic lattice associative memories (Ritter, Chyzhyk, Urcid,
& Graña, 2012; Urcid, Ritter, & Valdiviezo-N, 2011, 2012) are also
examples of associative memory models that belong to the LC
paradigm.

Similar to the original AMMs and the new PAMM models, the
four novel memory models exhibit unlimited absolute storage
capacity and fast retrieval of a stored vector. Furthermore, they
may exhibit better noise tolerance than the original AMMs and the
new PAMM models. In this paper, we also investigate the noise
tolerance of the new models theoretically. In addition, we address
the application of the new models in classification problems from
the literature (Alcala-Fdez, Fernández, Luengo, Derrac, & García,
2011; Lichman, 2013).

The paper is organized as follows: Next section provides the
mathematical background necessary for dealing with morphologi-
cal neural networks. Section 3 briefly reviews the original AMMs
of Ritter and Sussner. The max-plus and min-plus PAMMs are
discussed in Section 4 while their compositions are investigated
in Section 5. In Section 6 we evaluate the performance of the
proposed models in classification problems. The paper finishes
with some concluding remarks in Section 7 and an appendix with
the proofs of theorems.

2. Some mathematical background

The memory models considered in this paper are described
by lattice-based operations borrowed from minimax algebra, a

mathematical structure motivated by problems from scheduling
theory, graph theory, and dynamic programming (Cuninghame-
Green, 1979). Roughly speaking, theminimax algebra is developed
in a mathematical structure obtained by enriching a complete
lattice with two group operations (Sussner & Valle, 2006a). For the
purposes of this paper, however, we consider the totally ordered
field of real numbers (which is not a complete lattice) as themathe-
matical background. The supremumand the infimumof a bounded
set X ⊆ R are denoted respectively by the symbols

⋁
X and

⋀
X .

In case X = {x1, . . . , xn} ⊆ R is a finite set, the operations of
computing the maximum and the minimum are written as

⋁n
j=1xj

and
⋀n

j=1xj, respectively.
Given two matrices A ∈ Rn×k and B ∈ Rk×m, the max-product

and themin-product of A by B, denoted respectively by C = A ∨□ B ∈

Rn×m andD = A ∧□ B ∈ Rn×m , are given by the following equations
for all indexes i and j:

cij =

k⋁
ξ=1

(aiξ + bξ j) and dij =

k⋀
ξ=1

(aiξ + bξ j). (1)

Note that the max-product satisfies

A ∨□ (B + α) = (A ∨□ B) + α, ∀α ∈ R. (2)

Here, B + α is the matrix obtained by adding α to each entry of B.
Similarly, we have

A ∧□ (B + α) = (A ∧□ B) + α, ∀α ∈ R. (3)

In words, both lattice-based products are invariant under vertical
translations.

The conjugate of A ∈ Rn×k is the matrix A∗
∈ Rk×n whose

entries satisfy

a∗

ij = −aji, ∀i, j. (4)

Note that (A∗)∗ = A for any matrix A. The conjugate can be used to
establish the following identities concerning the min-product and
the max-product:

(A ∧□ B)∗ = B∗
∨□ A∗ and (A ∨□ B)∗ = B∗

∧□ A∗. (5)

Apart from (5), the lattice-based matrix operations are related by
means of the following adjunction relationship for matrices A ∈

Rn×k, B ∈ Rk×m, and C ∈ Rn×m:

A ∨□ B ≤ C ⇔ B ≤ A∗
∧□ C ⇔ A ≤ C ∧□ B∗. (6)

In analogy to the notion of linear combination, a max-plus
combination of vectors from a set X = {x1, . . . , xk} ⊆ Rn is any
vector a ∈ Rn of the form

a =

k⋁
ξ=1

(αξ + xξ ), αξ ∈ R. (7)

In words, a is the maximum of vertical translations of x1, . . . , xk.
The set of all max-plus combinations of vectors from X is denoted
by A(X ), i.e.,

A(X ) =

⎧⎨⎩a ∈ Rn
: a =

k⋁
ξ=1

(αξ + xξ ), αξ ∈ R

⎫⎬⎭ . (8)

Note that a ∈ A(X ) if and only if a = X ∨□ α for some α =

[α1, . . . , αk]
T

∈ Rn, where X = [x1, . . . , xk] ∈ Rn×k is the matrix
whose columns corresponds to the vectors of X .

Dually, a min-plus combination of x1, . . . , xk is any vector b ∈

Rn defined by

b =

k⋀
ξ=1

(βξ + xξ ), βξ ∈ R. (9)
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