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a b s t r a c t

This paper presents a novel adaptive dynamic programming(ADP)-based self-learning robust optimal
control scheme for input-affine continuous-time nonlinear systems with mismatched disturbances. First,
the stabilizing feedback controller for original nonlinear systems is designed by modifying the optimal
control law of the auxiliary system. It is also demonstrated that this feedback controller can optimize
a specified value function. Then, within the framework of ADP, a single critic network is constructed
to solve the Hamilton–Jacobi–Bellman equation associated with the auxiliary system optimal control
law. To update the critic network weights, an indicator function and a concurrent learning technique are
employed. By using the proposedupdate law for the critic network, the restrictive conditions including the
initial admissible control and the persistence of excitation condition are relaxed. Moreover, the stability
of the closed-loop auxiliary system is guaranteed in the sense that all the signals are uniformly ultimately
bounded. Finally, the applicability of the developed control strategy is illustrated through simulations for
an unstable nonlinear plant and a power system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to powerful abilities of self-learning and adaptivity,
adaptive dynamic programming (ADP) and reinforcement learning
(RL) have become significant tools for designing optimal con-
trollers for nonlinear systems in the past few decades (Bertsekas
& Tsitsiklis, 1996; He, 2011; Jiang & Jiang, 2017). ADP and RL are
almost in the same spirits when solving optimal control problems.
Therefore, the two names are often interchangeable in the liter-
ature (Lewis & Liu, 2013). A common structure utilized in ADP
and RL is the actor-critic architecture, which employs two neural
networks (NNs). To be specific, the actor NN generates a control
policy to the controlled system, and the critic NN evaluates the
value of that control policy and gives feedback information to
the actor NN (Liu, Wei, Wang, Yang, & Li, 2017). Based on this
architecture, many ADP and RL approaches have been proposed.

For discrete-time nonlinear systems, Zhong, Ni, and He (2016)
introduced a goal representation ADP to deal with nonlinear opti-
mal control problems. After that, Wei, Liu, Lewis, Liu, and Zhang
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(2017) developed a mixed iterative ADP to study the optimal
battery energy control problem arising in smart residential micro-
grids. Differing from Wei et al. (2017) and Zhong et al. (2016)
considering optimal control problems in time-triggering mecha-
nisms, Sahoo, Xu, and Jagannathan (2016) presented an event-
triggered near optimal control scheme for unknown nonlinear
systems via ADP. For continuous-time (CT) nonlinear systems, Vra-
bie and Lewis (2013) proposed an integral RL to calculate the Nash
strategies of partially unknown nonzero-sum games. After that,
Lee, Park, and Choi (2015) introduced a novel integral RL to solve
the optimal control problem of completely unknown nonlinear
systems. Meanwhile, Luo, Wu, Huang, and Liu (2015) developed
an off-policy RL to study the optimal control problem of unknown
nonlinear systems with input constraints. Later, instead of ad-
dressing optimal regulation of nonlinear systems, Kamalapurkar,
Andrews, Walters, and Dixon (2017) proposed a model-based RL
to design the optimal tracking controller for input-affine nonlinear
systems. More recently, Vamvoudakis, Mojoodi, and Ferraz (2017)
presented an event-triggered optimal tracking control of input-
affine nonlinear systems. In the aforementioned literature, distur-
bances/perturbations were generally not taken into consideration
while designing optimal controllers for nonlinear systems. Never-
theless, in real industry applications,many plants often suffer from
external disturbances/perturbations. Therefore, it is necessary to
develop robust optimal control strategies for nonlinear systems
with disturbances/perturbations.
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Recently, a robust ADP was introduced by Jiang and Jiang
(2014) to design the robust optimal controller for CT nonlinear
systems with matched uncertainties. After that, Wang, Li, Liu, and
Mu (2016) extended the robust ADP to develop a data-based robust
optimal control scheme for CT nonlinear plants subject tomatched
disturbances. In the above mentioned literature, the controlled
systems satisfied matched conditions (Corless & Leitmann, 1981).
In general, robust optimal control approaches for nonlinear sys-
tems withmatched uncertainties do not always hold for those sys-
tems with mismatched uncertainties/disturbances. Though there
already exist a few studies on robust optimal control of general
nonlinear systems (including systems with matched/mismatched
disturbances) (Fu & Chai, 2016; Luo, Wu, & Huang, 2015; Modares,
Lewis, & Jiang, 2015; Song, Wei, & Song, 2017; Wang, He, & Liu,
2017; Wei, Song, & Yan, 2016), most of them obtain the robust
optimal control policies via solving the zero-sum games. The main
difficulty in solving zero-sum games lies in that one needs to
judgewhether the saddle point exists or not beforehand. According
to Zhang, Wei, and Liu (2011), it is generally hard to judge the
existence of such saddle points of nonlinear zero-sum games. Even
worse, some nonlinear zero-sum games might not exist the saddle
points. This difficulty motivates our research.

On the other hand, to derive the robust optimal control
schemes, most of the above mentioned methods require to meet
certain conditions including the initial admissible control and
the persistence of excitation condition. The two conditions are
generally difficult to be satisfied (note: a detailed expression has
been provided in Section 4). Recently, in order to remove the
initial admissible control condition, Dierks and Jagannathan (2010)
proposed a single approximator-based control scheme to solve
the Hamilton–Jacobi–Isaacs equation. After that, by using a sim-
ilar architecture as in Dierks and Jagannathan (2010), Nodland,
Zargarzadeh, and Jagannathan (2013) designed an NN-based op-
timal output feedback controller for the helicopter unmanned
aerial vehicles. At the same time, Chowdhary, Yucelen, Mühlegg,
and Johnson (2013) introduced a concurrent learning technique
to relax the persistence of excitation condition. Later, Modares,
Lewis, and Naghibi Sistani (2014) applied this technique to design
the optimal controller for input-constrained partially unknown
CT nonlinear systems. More recently, Zhang, Zhao, and Wang
(in press) extended this technique to develop an event-triggered
robust control policy for uncertain CT nonlinear systems. However,
to the best of our knowledge, there are few studies on developing
robust optimal control strategies for nonlinear systems subject
to mismatched perturbations with requiring neither the initial
admissible control nor the persistence of excitation condition. This
also motivates our study.

In this paper, an ADP-based self-learning robust optimal control
scheme is developed for a class of CT nonlinear systems with mis-
matched disturbances for the first time. To beginwith, a stabilizing
feedback controller for original nonlinear systems is designed by
modifying the optimal control law of the auxiliary system. Mean-
while, the stabilizing feedback controller is proved to be able to
make a specified value function achieve optimality. To remove the
requirements of the initial admissible control and the persistence
of excitation condition simultaneously, an indicator function and a
concurrent learning technique are employed. In addition, by using
Lyapunov’s method, all the signals in the closed-loop auxiliary
system are demonstrated to be stable in the sense of uniform
ultimate boundedness (UUB).

The outline of this paper is illustrated as follows. After briefly
presenting the problem description in Section 2, we develop the
robust control scheme in Section 3. Section 4 shows that the ap-
proximation solution of the Hamilton–Jacobi–Bellman (HJB) equa-
tion can be derived via ADP, and Section 5 presents the stability
analysis of the closed-loop auxiliary system. Section 6 provides

two examples to validate the developed theoretical results. Finally,
Section 7 gives concluding remarks of this paper.

Notation: R denotes the set of all real numbers. Rm and Rn×m

denote the Euclidean space of all real m-vectors and the space
of all n × m real matrices, respectively. In is the identity matrix
of dimension n × n. T denotes the transpose. ≜ means ‘equal by
definition’. C1 denotes the class of functions with the continuous
derivative. When the vector x = [x1, . . . , xn]T ∈ Rn, ∥x∥ =√∑n

i=1|xi|
2 represents the Euclidean norm of x. When the matrix

A ∈ Rn×m, ∥A∥ represents the Frobenius-norm of A. Vx denotes
the partial derivative of the value function V (x) with respect to the
state x, i.e., Vx = ∂V (x)/∂x.

2. Problem description

Consider the robust optimal control problem of an uncertain
nonlinear system formulated as follows:

min J(x(t), u(t)) =

∫
∞

t
r(x(s), u(s))ds (1)

s.t.
ẋ(t) = f (x(t)) + g(x(t))u(t) +∆f (x(t)) (2)

where x ∈ Rn and u ∈ Rm are the state and the control vectors,
respectively, r(x, u) is a nonnegative function with respect to x and
u, f (x) ∈ Rn and g(x) ∈ Rn×m are known functions, and∆f (x) ∈ Rn

is an uncertain nonlinear function.
To facilitate later analyses, we impose two assumptions which

have been utilized in Tripathy, Kar, and Paul (in press), Wang, Mu,
Yang, and Liu (2017) and Yang, He, Liu, and Zhu (2017).

Assumption 1. f (x) and g(x) are locally Lipschitz continuous in
their arguments. Meanwhile, f (0) = 0, i.e., x = 0 is an equilibrium
point of system (2) when u(t) = 0 and ∆f (x(t)) = 0 for all t ≥ 0.
In addition, x0 = x(0) is the initial system state.

Assumption 2. The uncertain term∆f (x) satisfies themismatched
condition, that is,

∆f (x) = k(x)ω(x) (k(x) ̸= g(x) if m = p)

where k(x) ∈ Rn×p is a known function and ω(x) ∈ Rp is an
uncertain disturbance bounded by a known nonnegative function
ωM (x), i.e., ∥ω(x)∥ ≤ ωM (x) with ω(0) = 0 and ωM (0) = 0.
Moreover, there exists a nonnegative functionψM (x) such that, for
every x ∈ Rn,g+(x)∆f (x)

 ≤ ψM (x)

with ψM (0) = 0 and g+(x) the Moore–Penrose pseudo-inverse of
g(x).

The goals of this paper include two aspects: (i) Find a feedback
control u(x) such that system (2) is asymptotically stable. (ii) Find
a nonnegative function r(x, u) given as in (1) such that the value
function J(x, u) achieves optimality under the feedback control
u(x).

Owing to the existence of the uncertain disturbance ω(x), it
is often difficult to achieve the objectives (i) and (ii) by using
direct methods. To overcome the difficulty, we present an indirect
method based on the works of Lin (2007) and Lin and Brandt
(1998). Specifically, we will transform the robust optimal control
problem (1) and (2) into an optimal control problem of the auxil-
iary system.

3. Robust optimal control scheme

This section contains two parts. First, we present the auxiliary
system and the associated HJB equation. Then, we demonstrate
that the robust optimal control of system (2) can be obtained by
solving the HJB equation.
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