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a b s t r a c t

Different from the widely-studied full-order state estimator design, this paper focuses on dealing with
the reduced-order state estimation problem for delayed recurrent neural networks. By employing an
integral inequality, a delay-dependent design approach is proposed, and global asymptotical stability
of the resulting error system is guaranteed. It is shown that the gain matrix of the reduced-order state
estimator is determined by the solution of a linear matrix inequality. Numerical examples are provided
to illustrate the effectiveness of the developed result.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Compared with feedforward neural networks (Qian, Huang,
Chen, & Huang, 2017), recurrent neural networks (RNNs) generally
have more complicated dynamical behaviors due to their self-
evolutions with time (Haykin, 1999). Consequently, RNNs have
gained many successful applications in different areas including
combinatorial optimization, signal processing, wireless communi-
cation and intelligent control, etc.

To achieve better performance for some practical problems,
time delay is intentionally introduced in the models of RNNs. On
the other hand, time delay is also encountered in RNNs because
of the signal transmission between different neurons. However, as
a disadvantage, the presence of time delay would greatly change
the dynamical behavior of the underlying RNN such that the sta-
bility property would be destroyed. Therefore, stability and pas-
sivity analysis and synchronization of delayed RNNs have been
extensively studied in the past few years (Anbuvithya, Mathiyala-
gan, Sakthivel, & Prakash, 2016; Ding, Wang, Huang, & Zhang,
2017; Huang, Huang, & Chen, 2012; Huang, Li, Duan, & Starzyk,
2012; Huang, Li, Yu, & Chen, 2009; Kwon, Park, Lee, & Cha, 2014;
Mathiyalagan, Anbuvithya, Sakthivel, Park, & Prakash, 2016;Wang,
Ding, Shan, & Zhang, 2017; Yang, Wang, & Wang, 2017; Zhang, He,
Jiang, &Wu, 2016). A complete survey on stability of delayed RNNs
can be found in Zhang, Wang, and Liu (2014). In Yang et al. (2017)
and Zhang et al. (2016), some integral inequalities were proposed
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to discuss global asymptotical stability of delayed RNNs such that
less conservative stability conditions were obtained.

Recently, the state estimation problem of delayed RNNs has
attracted considerable attention (Wang, Ho, & Liu, 2005). This is
because, in a RNNwith a great number of neurons, it is very hard or
even impossible to get the state information of all neurons. While,
these information are often useful for practical applications. There-
fore, the study of the state estimator design for different RNNs
with time delays is of great significance. Sufficient design criteria
were reported in the literature (see, e.g., Ding, Wang, Wang, and
Zhang (2016); Hou, Dong, and Wang (2017); Huang, Feng, and
Cao (2008); Huang, Huang, and Chen (2013); Huang, Huang, and
Chen (2015); Mathiyalagan, Su, Shi, and Sakthivel (2015); Rat-
navelu, Manikandan and Balasubramaniam (2017); Sakthivel, An-
buvithya, Mathiyalagan, and Prakash (2015); Wang, Wang, and
Wu (2017); Xu, Lu, Peng, Xie, and Xue (2017); Xu, Lu, Shi, Tao,
and Xie (in press)). It should be noted that most of the results
mentioned above are concernedwith the full-order state estimator
design of delayed RNNs. While, in practice, the state information
of some neurons in a RNN may be measured. For these states,
it is no longer needed to be estimated. In addition, there are
many circumstances that only the information of a certain part of
neurons is required to be utilized for the problems in-hand. That is
to say, it is not always necessary to estimate the state information
of all neurons. At the same time, the computational cost would be
very high when all neurons’ states are estimated, especially for a
delayed RNN with a great number of neurons. This will be shown
later. It is thus worth studying the reduced-order state estimation
problem for delayed RNNs. To our knowledge, this issue has not yet
been investigated.
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Motivated by these observations, this paper is dedicated to
resolving the reduced-order state estimator design problem for a
class of delayed RNNs. By constructing an appropriate Lyapunov–
Krasovskii functional and employing an integral inequality, a suffi-
cient condition in terms of linearmatrix inequality (LMI) is derived
under which the resulting error system is globally asymptotically
stable. Then, a desired reduced-order state estimator is designed
via the feasible solution of the corresponding LMI and thus can
be efficiently implemented in practice. Two numerical examples
are provided to show the application and effectiveness of the de-
veloped design approach. The main contributions and advantages
of this study lie in three-folds: (i) it is the first time to study the
reduced-order state estimation problem for delayed RNNs and an
efficient approach is proposed to solve it; (ii) compared with the
full-order one, it is shown that the computational cost required
in the implementation of the reduced-order state estimator is
heavily reduced; and (iii) by employing the property of Legendre
polynomials, an integral inequality is presented to reduce the
conservativeness of the design criterion.

2. Problem formulation

Some notations used in this paper are defined here for con-
venience. Rn represents the n-dimensional Euclidean space and
Rn×m is the set of all n × m real matrices. I and 0 are, respectively,
the identity and zero matrices with compatible dimensions. The
transpose of a vector or matrix is denoted by the superscript ‘‘T’’.
For a real matrix X ∈ Rn×n, X−1 is the inverse of X if applicable,
and X > 0 (X < 0)means that X is symmetric and positive definite
(negative definite).

The delayed RNN discussed in this study is described by

ẋ(t) = −Ax(t) + Wf (x(t)) + Wdf (x(t − d)) + J (1)

y(t) = Cx(t) (2)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn and y(t) ∈ Rm

are, respectively, the state vector of the delayed RNN (1) and
available measured output, A = diag(a1, a2, . . . , an) is a diagonal
matrix with ai > 0 representing the firing rate of neuron i (i =

1, 2, . . . , n), W ∈ Rn×n and Wd ∈ Rn×n are, respectively, the
connection weight matrix and delayed connection weight matrix,
f (·) = [f1(·), f2(·), . . . , fn(·)]T is an activation function, J ∈ Rn

denotes the external input, d > 0 is a known constant which
represents the time delay of the delayed RNN (1), and C ∈ Rm×n is
a constant matrix.

The activation function f (·) is assumed to satisfy the following
condition:

Assumption 1. There are positive scalars li (i = 1, 2, . . . , n) such
that

0 ≤
fi(a) − fi(b)

a − b
≤ li. (3)

Furthermore, it is assumed that the matrix C in (2) is of full row
rank.

As discussed in Section 1, it is usually very difficult to obtain
the complete information of neurons of the delayed RNN (1). The
full-order state estimation problem for delayed RNNs was thus
extensively investigated in recent years (see, e.g., Ding et al.
(2016); Hou et al. (2017); Huang et al. (2008); Huang et al.
(2013); Huang et al. (2015); Mathiyalagan et al. (2015); Ratnavelu
et al. (2017); Sakthivel et al. (2015); Wang,Wang et al. (2017); Xu,
Lu, Shi et al. (in press)). However, in many practical applications, it
is not necessary to estimate the information of all neurons since it
would be very expensive. In this circumstance, it should be more
suitable to design a reduced-order state estimator for the delayed

RNN (1). That is, instead of estimating the full state x(t), only a
partial stateu(t) of x(t) is required to be estimated,which is defined
as

u(t) = Hx(t) (4)

where u(t) ∈ Rn−m and H ∈ R(n−m)×n is a known matrix with full
row rank. Since C is also of full row rank, one can easily choose
H such that the matrix

[
C
H

]
is nonsingular. For example, when

C =
[
1 0 0

]
, the matrix H can be chosen as H =

[
0 1 0
0 0 1

]
. It means

that, for the delayed RNN (1), x1(t) is available and one only needs
to estimate x2(t) and x3(t).

Since
[
C
H

]
is invertible, one can find two matrices M ∈ Rn×m

and N ∈ Rn×(n−m) such that[
C
H

]−1

=
[
M N

]
.

It is known from (2) and (4) that

x(t) = My(t) + Nu(t). (5)

This together with (1) and (4) gives

u̇(t) = −HAMy(t) − HANu(t) + HWf (My(t) + Nu(t))
+HWdf (My(t − d) + Nu(t − d)) + HJ. (6)

According to (6), a reduced-order state estimator for the de-
layed RNN (1) is constructed as

˙̄u(t) = −HAMy(t) − HANū(t) + HWf (My(t) + Nū(t))
+HWdf (My(t − d) + Nū(t − d)) + HJ + K (ẏ(t) − û(t)) (7)

where K ∈ R(n−m)×m is a gain matrix to be designed, and

û(t) = −CAMy(t) − CANū(t) + CWf (My(t) + Nū(t))
+ CWdf (My(t − d) + Nū(t − d)) + CJ.

Define the error between u(t) and ū(t) as ε(t) = u(t) − ū(t). It
follows from (6) and (7) that

ε̇(t) = −(AH − KAC )ε(t) + (WH − KWC )g(Nε(t))
+ (WdH − KWdC )g(Nε(t − d)), (8)

where AH = HAN, AC = CAN,WH = HW ,WC = CW ,WdH =

HWd,WdC = CWd and

g(Nε(t)) = f (My(t) + Nu(t)) − f (My(t) + Nū(t)).

Let g(·) = [g1(·), g2(·), . . . , gn(·)]T . From (3), it is obvious that, for
i = 1, 2, . . . , n, gi(0) = 0 and

0 ≤
gi(v)
v

≤ li. (9)

Then, for diagonal matrices Λ = diag(λ1, λ2, . . . , λn) > 0 and
Σ = diag(σ1, σ2, . . . , σn) > 0, one has

0 ≤ −2
n∑

i=1

λigi(Niε(t))(gi(Niε(t)) − liNiε(t))

= −2gT (Nε(t))Λg(Nε(t)) + 2gT (Nε(t))ΛLNε(t), (10)

0 ≤ −2gT (Nε(t − d))Σg(Nε(t − d))
+ 2gT (Nε(t − d))ΣLNε(t − d), (11)

where L = diag(l1, l2, . . . , ln) and Ni is the ith row of N .

Remark 1. The objective of this study is to present an efficient
approach to tackle the reduced-order state estimation problem for
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