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a b s t r a c t

The efficacy of deep brain stimulation (DBS) for Parkinson’s disease (PD) depends in part on the post-
operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the
frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control
method into the online adjustment of DBS amplitude and frequency. This approach was tested in a
computational model of basal ganglia–thalamic network. The autoregressive Volterra model was used
to identify the process model based on physiological data. Simulation results illustrated the efficiency of
closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the
relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz
constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption.
Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked
network activity by the closed-loop frequency adjustment stimulation was closer to the normal state.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Deep brain stimulation (DBS) is an adjustable and reversible
surgical treatment for Parkinson’s disease (PD), which is usually
used for patients who do not respond well to medication (Bron-
stein et al., 2011; Castrioto et al., 2011; Halpern et al., 2007; Krack
et al., 2003). The stimulation parameters used for DBS are tuned for
each patient using a time consuming trial-and-error process. Then
the selected regular short-duration (60–180 µs), high-frequency
(130–185Hz) pulses are used to alleviate themotor symptoms. The
efficacy of DBS is strongly dependent on the stimulation param-
eters (Kuncel, Cooper, Wolgamuth, & Grill, 2007; Kuncel & Grill,
2004; Rizzone et al., 2001). Currently, the stimulation parameters
are adjusted intermittently every 3–12 months by neurologists
while remain unchanged between clinical visits (Deuschl et al.,
2006; Hickey & Stacy, 2016). Unfortunately, the therapeutic win-
dow of such constant stimulation is sometimes limited by strong
side effects. Reprogramming stimulation parameters have been
shown to reverse the adverse effects (Frankemolle et al., 2010; Lee
et al., 2010; Moro, Poon, Lozano, Saint-Cyr, & Lang, 2006).

Although studies are carried out to investigate the relationship
between stimulation parameters and the clinical effectiveness of
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DBS (Heldman et al., 2016; Kuncel et al., 2007; Rizzone et al.,
2001), the parameter setting for different patients and follow-
up adjustments are still not standardized. Temporal pattern of
stimulation and closed-loopmodulation of stimulation parameters
are deemed as two stimulation waveform related therapeutic in-
novations (Rossi et al., 2016). Some studies prove that temporal
patterns of DBS are less effective than regular DBS in reducing
symptoms in rats (McConnell, So, & Grill, 2016), tremor (Birdno,
Kuncel, Dorval, Turner, & Grill, 2008; Birdno et al., 2011) and
bradykinesia in patients (Dorval, Kuncel, Birdno, Turner, & Grill,
2010). However, these studies offer important insights into how
DBSworks: the efficacy of high-frequencyDBS is correlatedwith its
ability to regulate neuronal firing patternswithin the basal ganglia.
Also, some studies demonstrate that the non-regular patterns of
stimulation are more effective than regular stimulation (Baker,
Zhang, & Vitek, 2011; Brocker et al., 2017, 2013). The differences in
findings may attribute to differences in stimulation targets (STN,
GPi and Vim) or methods of evaluation (Baker et al., 2011).

Closed-loop DBS consists of closed-loop, real-time adjustment
of stimulation parameters according to the patient’s clinical sta-
tus, which can tailor the therapy to individual patients’ needs
(Beuter, Lefaucheur, & Modolo, 2014; Carron, Chaillet, Filipchuk,
Pasillas-Lépine, & Hammond, 2013; Gorzelic, Schiff, & Sinha, 2013;
Hebb et al., 2014; Holt, Wilson, Shinn, Moehlis, & Netoff, 2016;
Little et al., 2016, 2013; Liu et al., 2013, 2015; Modolo, Beuter,
Thomas, & Legros, 2012; Rosin et al., 2011; Santaniello, Fiengo,
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Glielmo, & Grill, 2011; Su et al., 2015; Tinkhauser et al., 2017).
Rosin et al. use the spike time recorded in the primary motor
cortex to control the open time of stimulation delivered to the
GPi and prove these patterns are superior in alleviating akinesia
than standard DBS in MPTP-treated monkeys (Rosin et al., 2011).
Little et al. use the beta oscillation power of the STN local field
potentials (LFPs) to control the on and off time of stimulation signal
in PD patients, which can realize a 56% reduction in stimulation
time than standard DBS (Little et al., 2013). These two stimulation
strategies belong to the on-demand control from the control-
theory perspectives. Another type of stimulation strategy called
adaptive stimulation is realized through the real-time modulation
of DBS amplitude or frequency parameter and mainly carried out
on computational models. The traditional proportional–integral–
derivative (PID) methodology (Liu et al., 2013), the generalized
minimum variance control law, the adaptive control (Su et al.,
2015) and variable universe fuzzy control algorithm (Liu et al.,
2015) are studied to calculate the online stimulation waveforms.
Although these studies are very promising, the optimal closed-loop
stimulation method is still not discovered and the different action
mechanisms between regular DBS and closed-loop stimulation
need to be explored.

These studies motivated our current study. The nonlinear pre-
dictive control algorithmwas used to realize the online adjustment
of stimulation parameters, and then we attempted to explain the
difference between regular DBS and closed-loop modulated stim-
ulation from the distribution of BG neurons’ inter-spike-intervals
(ISIs). This paper was organized as follows. The introduction of
the computational model and selection of feedback signal were
given in Section 2. In Section 3, the identification of the AR-Volterra
model using the input–output data was described. The control
framework was introduced in Section 4. Computer simulation
results were presented in Section 5. Finally, the discussion and
conclusion were given in Section 6.

2. Computationalmodel of the basal ganglia–thalamicnetwork

Weused the basal ganglia–thalamic networkmodel (BGmodel)
developed by Rosa et al. to test the efficacy of the proposed stim-
ulation method in reducing the mean energy consumption and
preserved efficacy (So, Kent, andGrill, 2012). Themodel ismodified
from the Rubin and Terman model (RT model) (Rubin & Terman,
2004). Comparedwith the original RTmodel, Rosa et al. change the
ionic currents in each neuron and the topological structure of the
network to make the model activity closer to experimental data.
This model includes the subthalamic nucleus (STN), the globus
pallidus internal (GPi), the globus pallidus external (GPe), and
the thalamus (TH). The number of each nucleus is 10. Each GPe
(GPi) neuron receives excitatory inputs from two STN neurons and
inhibitory inputs from two GPe neurons. Each STN neuron receives
inhibitory inputs from two GPe neurons. Each GPi neuron projects
to a single TH neuron. The network and connectivity patterns of
individual neurons were illustrated in Fig. 1.

2.1. Simulation of the network activity under normal and pathological
states

Positive constant bias currents (Iapp) are applied to each neuron
to represent the net synaptic inputs from other brain regions.
The pathological changes induced by the death of dopaminergic
neurons in the substantia nigra compact (SNc) are modeled by the
decrease of bias currents to STN, GPe andGPi neurons. As proposed

Fig. 1. (A) The network layout of the BG model. (B) Topology connections among
neurons.

by Rosa Q. (So et al., 2012), the Hodgkin–Huxley type equations are
used to model the membrane dynamics of STN, GPe, GPi and TH
neurons which are as follows,

Cm
dvSTN

dt
= −IL − INa − IK − IT − ICa − IAHP − IGPe→STN

+ Iapp_STN + Idbs

Cm
dvGPe

dt
= −IL − INa − IK − IT − ICa − IAHP − ISTN→GPe

+ IGPe→GPe + Iapp_GPe

Cm
dvGPi

dt
= −IL − INa − IK − IT − ICa − IAHP − ISTN→GPi

+ IGPe→GPi + Iapp_GPi

Cm
dvTH

dt
= −IL − INa − IK − IT − IGPi→TH + ISMC

(1)

here vi, i ∈ {STN,GPe,GPi, TH} are the membrane potentials of
single STN, GPe, GPi, and TH neuron respectively, Cm = 1 µF/cm2

is themembrane capacitance. IL, INa, IK , IT , ICa, IAHP are the leak cur-
rent, the sodium current, the potassium current, the low-threshold
calcium current, the high-threshold Ca2+ current, and the after hy-
per polarizationK+ current, separately. Iα→β describes the synaptic
current from structure α to β:

Iα→β = gα→βsα
(
vβ − Eα→β

)
(2)

where α represents the pre-synaptic neuron and β represents
the post-synaptic neuron, α ∈ {GPe, STN,GPi} and β ∈

{STN,GPe,GPi, TH} .sα is the synaptic variable of the pre-synaptic
neuron, gα→β is themaximal synaptic conductance and Eα→β is the
synaptic reversal potential. Iapp_i, i ∈ {STN,GPe,GPi} represent the
bias currents applied to the STN, GPe, and GPi neuron respectively,
which are the sensitive parameters modified to change the model
states, and the values for different states are given in Table 1. ISMC is
the excitatorymonophasic current pulse applied to the TH neurons
from the sensorimotor cortex (SMC), which is modeled as a series
of monophasic current pulses as follows,

ISMC = iSMCH (sin (2π t/ρSMC ))

· [1 − H (sin (2π (t + δSMC )) /ρSMC )] (3)

where iSMC = 3.5 µA/cm2 is the amplitude of the pulse, δSMC = 5
ms is the duration. In order to model the non-regular nature of
SMC input, the frequency of the pulse 1/ρSMC is drawn from a
gamma distribution with an average rate of 14 Hz and a coefficient
of variation of 0.2 (So et al., 2012). The stimulation pulse delivered
to STN Idbs is modeled as follows,

Idbs = idH (sin (2π t/ρd)) · [1 − H (sin (2π (t + δd)) /ρd)] . (4)
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