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a b s t r a c t

We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects
of the mammal brain. Its main novelty lies in its topological structure which is built as an array of
interacting elementary motifs shaped like loops. These loops come in various types and can implement
functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each
loop features two sets of neurons and a control region, linked together by non-recurrent projections.
The two neural sets do the bulk of the loop’s computations while the control unit specifies the timing
and the conditions under which the computations implemented by the loop are to be performed. By
functionally linking many such loops together, a neural network is obtained that may perform complex
cognitive computations. To demonstrate the potential offered by such a system, we present two neural
network simulations. The first illustrates the structure and dynamics of a single loop implementing a
simple gating mechanism. The second simulation shows how connecting four loops in series can produce
neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that
this network reproduces electrophysiological measurements gathered in various regions of the brain of
monkeys performing similar tasks.We also demonstrate connections between this type of neural network
and recurrent or long short-termmemorynetworkmodels, and suggestways to generalize them for future
artificial intelligence research.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial intelligence has recently made spectacular leaps for-
ward in solving complex perception and prediction problems
related to pattern recognition (e.g., ImageNet competition) and play-
ing games at the level of expert human players (e.g., AlphaGo of
DeepMind), to name a few successful achievements. Among the
approaches and tools that made this possible, the deep learning
paradigm for multi-layer feedforward neural networks (LeCun,
Bengio, & Hinton, 2015) has probably had the most significant
impact. Indeed, by adding a large number of hidden layers that
are trained as unsupervised features detectors, deep learning sub-
stantially improves the classification performance of the standard
supervised multi-layer perceptron with error backpropagation
training (MLP-BP) architecture. Deep learning in its convolutional
neural network form also brings some biological plausibility to the
MLP model as a mimic of the main workings of the primary visual
system of primates (Hubel & Wiesel, 1959, 1962).
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As impressive as the advances brought forth by deep learning
are, it remains to be shown whether it can scale up to more
ambitious problems such as developing machines capable of self-
awareness or a theory ofmind (Fodor, 1981; Putnam, 1980). Taking
a few steps back, one can argue that despite their prowess, neural
networks equipped with deep learning currently fall short of ex-
hibiting the rich dynamics and structural diversity exhibited by the
brains of higher organisms at rest or when solving problems. In-
deed, as has been shown using brain-imagingmethods on subjects
performing various tasks, the patterns of neural activity taking
place in the brain vary considerably as a function of space, time
and what the subjects are doing. First, the neural activation levels
at different brain locations greatly vary in magnitude, with strong
correlationswith the behavior being currently executed (e.g., there
is motor cortex activation when the subject is engaged in a motor
task— Penfield & Boldrey, 1937); these variations are interpreted
as the brain summoning the elementary functions (e.g., sensory
or motor) necessary to perform the behavior at hand. Second, it
was also found that the correlations between the neural activities
in distinct brain regions change over time, especially for brain
areas harboring functions useful to the current behavior (Fris-
ton et al., 1997). This is commonly interpreted as a higher-scale
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Fig. 1. Structure and location of gating loops. A General diagram of a gating loop spanning cortical neuron sets 1 and 2, and controlled by a third unit labeled gatekeeper.
Information contained within neuron set 1 is carried over to neurons in set 2 by projections labeled with * depending on the state of the gatekeeper unit (modified from
Gisiger and Boukadoum, 2011). B Diagram of three gating loops currently supported by experimental and theoretical evidence: loop controlled by neural circuitry located in
the thalamus (1), the basal ganglia (2) or in cortex itself (3). (For interpretation of the references to color in this figure legend and how it encodes correspondance between
structures in A and B, the reader is referred to the web version of this article.)
Source: See Gisiger and Boukadoum (2011) for details.

phenomenon where distinct brain regions become integrated to-
gether into larger functional entities as they exchange information
with each other or collaborate to perform higher-level compu-
tations (Fuster, 1997). Further, the anatomical complexity of the
brain’s structure matches that of its dynamics; structural studies
have shown that most neurons are localized in the cortex, where
they are organized in local groups that are themselves intercon-
nected in a complex network of longer-range reciprocal projec-
tions (Van Essen, Felleman, DeYoe, Olavarria, & Knierim, 1990).

Though those findings and interpretations seem reasonably
well established, there is no clear consensus on the specific brain
mechanisms underlying the observed dynamicswhen accomplish-
ing given cognitive tasks. The options proposed in the literature
encompass selection and competition (see Cocchi, Zalesky, For-
nito, & Mattingley, 2013; Fuster, 1997 and references therein) and
synchronization (Varela, Lachaux, Rodriguez, & Martinerie, 2001)
to mention just a few. In this work, we present novel potential
candidates for the mechanisms at play in a simple, yet neural-
realistic form. This not only simplifies the grasping of the proposed
concepts, but also opens the door for their use to implement some
cognitive functions associated with the intelligence phenomenon
as we will show. We base our discussion on the viewpoint that
the neural subsets that implement simple functions in the brain
behave as atomic functional entities, and that one should try to
find how they interact with each other to generate the observed
dynamics. Following this approach, Bressler (1995) suggested the
existence of several types of essential interactions, one of them
being gating. Gating refers to the control that a given neural pop-
ulation has over the information exchange taking place between
two other neural groups (see Gisiger and Boukadoum, 2011 for a
review and references therein).

Fig. 1A shows a general neural implementation of gating, where
the information traveling from one group of neurons (group 1)
to another (group 2) is either stopped at the input (‘‘gate’’) of
the destination group or granted passage depending on the state
of neurons in a third ‘‘gatekeeper’’ population. Several mecha-
nisms involving either inhibitory interneurons (Burchell, Faulkner,
& Whittington, 1998; Olshausen, Anderson, & Van Essen, 1993,
1995; Vogels & Abbott, 2009) or bistable neurons (Grace, 2000;

Kepecs & Raghavachari, 2007) have been proposed to account for
the gating process, and work is still under way to better define
them. Electrophysiological studies have also provided evidence
that, depending on the cases considered, the gatekeeper circuitry
might be located within the cortex or in subcortical areas of the
brain (see Fig. 1B and Gisiger & Boukadoum, 2011 for a review).

To better understand how such gating mechanisms might fit
in the overall brain circuitry, Gisiger and Boukadoum (2011) sug-
gested a generic neural loop with gating as described in the pre-
vious paragraph and as shown in Fig. 1A, with the gate opening or
closing depending on the activity of the gatekeeper unit, which can
integrate information that is both intrinsic (activities of sets 1 and
2 in Fig. 1) and extrinsic (activity of other brain areas). Also, as we
will see, communicating the gate state to other brain regions can
have important and interesting computational properties (see also
Gisiger and Boukadoum, 2011 for a discussion).

From a computational standpoint, gating mechanisms, with
their ability to manage information communication between neu-
ral groups, allow them to either function independently (e.g., har-
bor unrelated activity patterns), or as one larger group to perform
computations together. Such gating mechanisms have been pro-
posed to solve delayed-response tasks where information must be
sustained and protected in the mind of the subject over a delay
in order to produce a response (Frank, Laughry, & O’Reilly, 2001;
Gisiger & Kerszberg, 2006; Gisiger, Kerszberg, & Changeux, 2005).
Gating mechanisms also allow the confining of synaptic plasticity
and learning to connections controlled by gating units in their
open state (Gisiger & Kerszberg, 2006, 2007; Gisiger et al., 2005).

Another essential feature of brain dynamics is inhibitory control
(Fuster, 1997), which allows the brain to suppress excitatory activ-
ity using inhibition. Inhibitory control is often included in neural
network simulations to suppress computations by-products, to
eliminate activity coding for out-of-date information, or to weed
out unproductive alternatives (see Gutkin, Laing, Colby, Chow, &
Ermentrout, 2001 for an example). As will be argued here, it is
likely that some form of inhibitory control, governed by neural
loops and acting at the level of brain areas, exists in the brain for
similar purposes.
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