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a b s t r a c t

The Support Vector Machine (SVM) is a supervised learning algorithm to analyze data and recognize
patterns. The standard SVM suffers from some limitations in nonlinear classification problems. To tackle
these limitations, the nonlinear form of the SVM poses a modified machine based on the kernel functions
or other nonlinear feature mappings obviating the mentioned imperfection. However, choosing an
efficient kernel or feature mapping function is strongly dependent on data structure. Thus, a flexible
feature mapping can be confidently applied in different types of data structures without challenging a
kernel selection and its tuning. This paper introduces a new flexible feature mapping approach based on
the Dirichlet distribution in order to develop an efficient SVM for nonlinear data structures. To determine
the parameters of the Dirichlet mapping, a tuning technique is employed based on the maximum
likelihood estimation and Newton’s optimizationmethod. The numerical results illustrate the superiority
of the proposed machine in terms of the accuracy and relative error rate measures in comparison to the
traditional ones.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since support vector machine (SVM) was introduced by
Vapnik (1998), it has received a great deal of attention from many
researchers during the past decade. An SVM is a non-parametric
max-margin classification technique aims at classifying data into
twogroups,making it useful for two-group classification problems.
However, it has also been extended to solve multi-group classi-
fication problems (Crammer & Singer, 2001; López & Maldonado,
2016; Platt, Cristianini, & Shawe-Taylor, 1999; Weston &Watkins,
1998; Zangooei & Jalili, 2012), continuous output cases (Suykens &
Vandewalle, 1999; Xu, An, Qiao, Zhu, & Li, 2013), semi-supervised
problems (Reitmaier & Sick, 2015), rank learning (Kim, Ko, Han, &
Yu, 2014) and so on. According to the previous researches, SVM
has outperformed other classification techniques in terms of the
accuracy measures (Auria & Moro, 2008; Joachims, 1998). Unfor-
tunately, it suffers from some limitations which lead to inefficient
separation in some datasets, so that the efficiency of this method
associates to data structure. This fact is especially true for linear
models of SVMs which are not flexible enough and consequently
are strongly case-dependent. The traditional trick to avoid such
inefficiency is to use kernel functions and other feature mappings
combined with an SVM to establish a nonlinear classifier. Further-
more, training the SVMmodel and kernel parameters considerably
affect its results. For a detailed description of training SVMs refer
to Oneto, Ridella, & Anguita, 2016.
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A rich literature can be found in the current area focused on im-
proving the generalization of SVM based on combiningmethods or
modifying separating hyperplanes, classification margin, bound-
ary, etc. Zhang and Zhou (2016) presented a nonlinear combination
of fisher discriminant analysis and SVM to obtain good statistical
separability. Ma, Rana, Taghia, Flierl, and Leijon (2014) developed
aminimumwithin-class andmaximum between-class scatter ma-
chine in order to take the class distribution into consideration.
Some researchers used ellipsoidal boundaries (Czarnecki & Tabor,
2014) and non-parallel hyperplanes (Shao, Chen, & Deng, 2014) to
achieve better performance. Cuong andVan Thien (2016) proposed
a method to reduce the number of support vectors to improve
the convergence speed. Some related works in the literature also
focused on improving the flexibility and accuracy of the SVM
(Yue, Finley, Radlinski, & Joachims, 2007). In summary, one can
categorize previous studies into two major groups: modifying and
developing the basemodel of the SVMandusing kernel ormapping
functions which can be used to increase the SVM flexibility and
improve accuracy in some cases (Chen, Wang, & Zhong, 2016;
Tanveer, Shubham, Aldhaifallah, & Ho, 2016).

To provide a comprehensible report of our study, the remaining
sections are organized as follows: In Section 2, related works will
be surveyed to highlight the novelty of the proposed machine
comparing to the similar works. Section 3 is designated to review
traditional SVM. The Dirichlet distribution and its properties are
described in Section 4. Some statements about the flexibility of
this distribution are also given in this section. In Section 5, the
main contribution of the current research is delineated and the
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model of the Dirichlet SVM is presented. Numerical experiments
performed as a means of investigating are presented in Section 6,
including both synthesized and real-case datasets. To providemore
reliable results, Section 7 is dedicated to compare the accuracy and
robustness of the models under different nuisance rates. Finally,
Section 8 concludes the paper.

2. Related works and contribution

Many studies in the literature have focused on improving the
SVM model from different viewpoints. In this regard, kernel and
feature mapping function are interesting topics received much
attention by the researchers. One of the earliest works in this area
was conducted by Amari and Wu (1999) based on the Riemannian
geometry; where, the spatial resolution around the separating
boundary surface is enlarged such that the separability between
classes is increased.

Yujian, Bo, Xinwu, Yaozong, and Houjun (2011) presented a
solid geometric theory and developed piecewise linear classifiers
for support vector machine. They provided two novel algorithms
based on SVM called support conlitron algorithm and support
multiconlitron algorithm. This schemewas extended to alternating
version and simplified by Li and Leng (2015).

Peng, Hu, Chen, and Dang (2015) proposed a mapping function
to embed nominal attributes into a real space byminimizing an es-
timated generalization error for heterogeneous data and achieved
more accuracy comparing to traditional machine.

Huang, Mehrkanoon, and Suykens (2013) developed a linear
piecewise feature mapping based on hinging hyperplanes to pro-
vide a piecewise boundary for classifying data. They suggested
a segmentation scheme on data and showed that using linear
piecewise SVM can considerably improve the accuracy measure.
Such a segmentation is challenging to perform and the relevant
criteria is selected randomly. Thus, given the above, it is evident
that different segmentation approaches result in unreliable accu-
racy. Another linear mapping function was developed by Huang,
Suykens, Wang, Hornegger, and Maier (2017) called ℓ1 Distance
Kernel which is linear in subregions and nonlinear in global region.

A nonlinear mapping was introduced by Nedaie and Najafi
(2016). They developed a new model called polar SVM based on
the polar coordinate system. Angles and distances are used in
polar SVM instead of the Cartesian coordinates. They made this
choice because complex separators can be established in polar sys-
tem more simply. Other similar works were performed by Burges
(1998) and Li, Yang, Gu, and Zhang (2013).

In the current area, Parameter(s) tuning is an important issue in
using kernel and feature mapping functions. In many researches,
kernels and mapping functions are subjected to parameter tuning
or other initializations, such as the number of segments (Carrizosa,
Martín-Barragán, & Morales, 2014; Wu & Wang, 2009). In this
regard, Yin and Yin (2016) showed that the performance of an SVM
depends highly on the selection of the kernel function type and
relevant parameters andproposed a novel index to serve as a better
class separability criterion. In sum, a flexible feature mapping
approach with an efficient tuning procedure is an essential aspect
of SVMmodeling. This notion has motivated our research, the aim
of which is to introduce a new feature mapping based on a flexible
function called Dirichlet distribution.

Closely similar to our contribution, Bdiri and Bouguila (2013)
employed inverted Dirichlet distribution for kernel generation of
support vector machine which can be applied in sequence data
with different length; where, the performance of the model is
greatly dependent on the posterior. To the best of our knowledge,
this is the only research that uses inverse probability density
function of Dirichlet to develop kernels (not feature mapping) for
SVM. The proposed functions in this study is useful in classifying

datapointswith different length i.e. text/image pattern recognition
problems. Slightly apart from this research, our work aims at
developing a newmapping function based onDirichlet distribution
that does not suffers from challenges of posterior information. In
addition, the proposed function can be tuned based on Newton’s
algorithm;where, it will be shown that the convergence to optimal
parameters is guaranteed.

A Dirichlet distribution is generalized form of Beta distribution.
Due to the ability of the Dirichlet distribution to generate linear,
convex and concave hyperplanes, it is very flexible for mapping
data into the feature space. Generally, owing to its different shapes
governed by its parameters, this distribution can be applied as an
efficient featuremapping.Hence, our proposed approach combines
a traditional machine with a Dirichlet mapping to provide an
efficient model that incorporates the advantages of this function.
The new model is introduced and investigated in the subsequent
sections.

3. Support vector machine

Support vector machine is a popular and well-known super-
vised learning technique, aimed at finding amax-margin separator
hyperplane to classify data (Sklar, 2014). When an SVM model
is combined with a kernel function, it provides better flexibility
relative to the simple form to apply in different data structures.
For greater understanding of this concept, consider a dataset Ξ =

{xi , yi}mi=1 to be classified, where xi ∈ Rn and yi ∈ {−1, 1} are
datapoints and class labels, respectively. This case is a binary clas-
sification problem that seeks a function f (x) in which sign (f (x)) is
the most accurate separator for the given data and can be obtained
by solving the quadratic programming problem as noted below:

min
1
2

n∑
j=1

ωj + C
m∑
i=1

ξi

yi
(
ωTφ (xi)+ b

)
≥ 1 − ξi , i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

(1)

where, ωj and b are the normal vector and bias of the separator,
respectively; ξi denotes the slack variables and the positive scalar
C is penalty of misclassification. In addition, the term φ (x) is a
feature mapping (usually a kernel function) which maps features
to a higher or infinite dimensional space called feature space to
provide a nonlinear separator and can be looked-up depending
on the data structure. Generally, the nonlinear SVM performance
is strongly dependent on selecting a suitable kernel function and
tuning its parameter(s). While many methods for tuning SVM
parameters have been proposed, their solutions may yield local
optima only. Moreover, there is no rule-based procedure to select
a mapping function or kernel and consequently making it difficult
to attain the desired level of accuracy. As a more flexible kernel
function would result in a more accurate model, the current work
presents here introduces a flexible mapping function based on the
Dirichlet distribution discussed below.

4. Dirichlet distribution

Dirichlet distribution is the generalized multivariate form of
beta distribution. The flexibility provided by the Dirichlet distri-
bution is used to model the shape of the different functions. This
distribution is able to construct linear, convex and concave hulls
by manipulating the parameters. Fig. 1 shows the flexibility of this
distribution regarding the different values for parameters α. The
following is the probability function of Dirichlet distribution:

fX (x1, x2, . . . , xn−1) =

Γ

(
n∑

j=1
αj

)
n∏

j=1

(
Γ
(
αj
)) n∏

j=1

x
αj−1
j . (2)
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