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a b s t r a c t

Support vector ordinal regression (SVOR) is a popular method for tackling ordinal regression problems.
Solution path provides a compact representation of optimal solutions for all values of regularization
parameter,which is extremely useful formodel selection. However, due to the complicated formulation of
SVOR (includingmultiple equalities and extra variables), there is still no solution path algorithmproposed
for SVOR. In this paper, we propose a regularization path algorithm for SVORwhich can track the two sets
of variables of SVOR w.r.t. the regularization parameter. Technically, we use the QR decomposition to
handle the singular matrices in the regularization path. Experiment results on a variety of datasets not
only confirm the effectiveness of our regularization path algorithm, but also show the superiority of our
regularization path algorithm on model selection.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Ordinal regression (OR) is an important learning task in ma-
chine learningwhichwidely exists in real-world applications, such
as collaborative filtering (Shashua & Levin, 2002), information
retrieval (Herbrich, Graepel, & Obermayer, 1999), and flight de-
lays forecasting (McCrea, Sherali, & Trani, 2008). In OR problems,
training samples are labeled by a set of ranks which exhibit an
ordering among different categories. Take collaborative filtering as
an example, the rating that a customer assesses a movie might be
one of do-not-bother, only-if-you-must, good, very-good, and run-
to-see. The ratings have a natural order. Thus, OR is distinguished
from traditional multiple classification problems.

Support vector ordinal regression (SVOR) is a popular method
for tackling OR problems (Shashua & Levin, 2002). There are
several versions of SVOR. All of them are to find multiple par-
allel discrimination hyperplanes. Specifically, Shashua and Levin
(2002) first proposed two versions of SVOR based on the fixed-
margin principle and the sum-of-margins principle, respectively.
Later, Chu and Sathiya Keerthi (2007) improved the fixed-margin
based SVOR by explicitly and implicitly keeping the partial order of
the multiple parallel discrimination hyperplanes. Gu, Sheng, Tay,
Romano, and Li (2015) proposed a modified version of the sum-
of-margins based SVOR for the incremental learning. In this paper,
we mainly focus on the most popular one (the fixed-margin based
SVOR by the explicit constraints), and call it SVOR for the sake of
convenience.
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Assume that the samples in OR problem are labeled by a set of
ranks Y = {1, 2, . . . , r}. The number of training samples in the jth
rank (j ∈ Y ) is denoted as nj, and the ith training sample is denoted
as xji (x

j
i ∈ X , where X is the input space with X ⊂ Rd). Chu and

Sathiya Keerthi (2007) proposed the primal problem of SVOR as
follows.

min
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where training samples xji are mapped into a high dimensional re-
producing kernel Hilbert space (RKHS) (Schölkopf & Smola, 2001)
by the transformation function φ. We have the kernel function
K (xi, xj) = ⟨φ(xi), φ(xj)⟩with ⟨·, ·⟩ denoting inner product in RKHS.
Furthermore, ϵ j

i (ϵ
∗j+1
i ) is a non-negative slack variable measuring

the degree of misclassification of the data xji (x
j+1
i ). The regular-

ization parameter C ∈ [0,∞) controls the trade-off between the
errors in the training samples and the margin, which is usually
tuned by model selection.

Solution path provides a compact representation of optimal
solutions for all values of regularization parameter, which is ex-
tremely useful for model selection (Gu & Ling, 2015). There
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Table 1
Representative solution path algorithms. (BC, R and OR are the abbreviations of binary classification, regression and ordinal regression, respectively. EV denotes extra
variables.)

Problem Task Reference Parameter Robust Equalities EV

C-SVC BC Hastie et al. (2004) Regularization parameter C No One No
2C-SVC BC Bach et al. (2006) and Gu et al. (2017) Regularization parameters C+ , C− No One No
ε-SVR R Gunter and Zhu (2007) Regularization parameter No One No
ε-SVR R Wang et al. (2008) Regularization parameter and ε No One No
Lasso R Rosset and Zhu (2007) Regularization parameter No Zero No
KQR R Takeuchi et al. (2009) Quantile order τ ∈ (0, 1) No Zero No
KQR R Li et al. (2007) Regularization parameter No Zero No
C-SVC BC Karasuyama and Takeuchi (2011) Regularization parameter C No One No
ν-SVC BC Gu et al. (2012) Regularization parameter ν No Two No
C-SVC BC Dai et al. (2013) and Ong et al. (2010) Regularization parameter C Yes One No
C-SVC BC Sentelle et al. (2016) Regularization parameter C Yes One No
ν-SVC BC Gu and Sheng (2017) Regularization parameter ν Yes Two No
SVOR OR Our Regularization parameter C Yes Multiple Yes

have been a lot of solution path algorithms proposed for several
learning algorithms. For example, Hastie, Rosset, Tibshirani, and
Zhu (2004) proposed a solution path approach for C-SVC. Bach,
Heckerman, and Horvitz (2006) and Gu, Sheng, Tay, Romano, and
Li (2017) proposed a solution path algorithm and a solution surface
algorithm, respectively, for 2C-SVC. Gunter and Zhu (2007) and
Wang, Yeung, and Lochovsky (2008) proposed the solution path
algorithms for ε-SVR to trace the solutions with respect to ε and
the regularization parameter, respectively. Rosset and Zhu (2007)
proposed a solution path for Lasso. Gu,Wang, Zheng, and Yu (2012)
proposed a robust solution path algorithm for ν-SVC. Li, Liu, and
Zhu (2007) and Takeuchi, Nomura, and Kanamori (2009) proposed
the solution path algorithms for kernel quantile regression (KQR)
to trace the solutions with respect to the regularization parameter
and the quantile order τ ∈ (0, 1), respectively. Karasuyama and
Takeuchi (2011) proposed an approximate solution path for C-SVC.
Because computing an inverse matrix is needed for each iteration,
the solution path algorithm will interrupt when the key matrix
is singular. To address this issue, several robust solution path
algorithms were proposed. For example, Dai, Chang, Mai, Zhao,
and Xu (2013), Ong, Shao, and Yang (2010) and Sentelle, Anagnos-
topoulos, and Georgiopoulos (2016) proposed improved solution
path algorithms to handle the singularmatrices encountered in the
method of Hastie et al. (2004). Gu and Sheng (2017) proposed a
robust solution path algorithm for ν-SVC.We summarize the above
algorithms in Table 1.

From Table 1, we find that existing solution path algorithms are
mainly designed for binary classification and regression problems.
However, SVOR essentially solves multiple binary classifications
problems as mentioned in (1). More importantly, SVOR has a more
complicated formulation than C-SVC, Lasso, KQR. Specifically, the
existing solution path algorithms for binary classification and re-
gression problems solve the convex optimization problem with
zero, one or two equalities. However, the dual formulation of SVOR
has multiple equalities and extra variables as shown in (2). Due to
the complications in the formulation of SVOR as discussed above,
there is still no solution path algorithm proposed for SVOR. To
address this issue, in this paper, we propose a regularization path
algorithm for SVOR (called RP-SVOR) which can track the two
sets of variables of SVOR w.r.t. the regularization parameter C .
Particularly, the robust solution path algorithm is implemented
by using the QR decomposition to handle the singular matrices.
Experiment results on a variety of datasets not only confirm the
effectiveness of RP-SVOR, but also show the advantage of RP-SVOR
for model selection.

The remainder of the paper is organized as follows. Section 2
presents the dual formulation of SVOR and its Karush–Kuhn–
Tucker (KKT) conditions. Our RP-SVOR is presented in Section 3. In
Section 4,we present the experiment results.We draw conclusions
in Section 4.

Notations: To make the notations easier to follow, we give a
summary of the notations in the following list.

αi, gi The ith element of vector α and g .
xji The ith sample of the training samples for the jth rank.
∆ The amount of the change of each variable.
HSSSS The submatrix of H with the rows and columns indexed by

SS .

µj If j ∈ J , µj stands for µj, where the active set J ⊆

{2, . . . , r − 1} is defined in Section 2.2. Otherwise, they will be

ignored, i.e., µj
= 0.

uSjS
A |SS |-dimensional column vector with all zeros except that

the positions corresponding to the samples (xi, yi) of S jS are
equal to−yi, respectively.

ej A (r−1)-dimensional column vector with all zeros except that
the jth and (j+1)th elements are equal to 1 and−1, respectively.

2. SVOR

In this section, we first present the dual formulation of SVOR,
and then give the corresponding KKT conditions.

2.1. Dual formulation of SVOR

If directly solving the problem (1), we need to handle a compli-
cated Lagrange problem with the primal variables w, b, ϵ and ϵ∗,
and the Lagrange variables with the size of 2×

∑r
j=1n

j
−n1
−nr
+

r − 2 corresponding to the inequality constraints in (1). To avoid
the complicated Lagrange problem,we turn to solve a compact and
equivalent problem, i.e., the dual problem of SVOR.

Before giving the dual problem, we first introduce an extended
training sample set. Based on the reduction framework of Li and
Lin (2007), SVOR can be regarded as r − 1 binary classification
problems. Thus, we define a two-class training sample set S j =
{(xji, y

j
i = −1)}

nj
i=1 ∪ {(x

j+1
i , yj+1i = +1)}n

j+1

i=1 , and an extended
training sample set S =

⋃r−1
j=1 S

j
= {(x1, y1), . . . , (xl, yl)}, where

l = 2×
∑r

j=1n
j
− n1
− nr .

Based on the extended training sample set S, the dual formula-
tion of (1) can be formulated as follows Chu and Sathiya Keerthi
(2007).

min
0≤α≤C,µ≥0

1
2
αHαT

−

r−1∑
j=1

∑
i∈Sj

αi (2)

s.t.
∑
i∈Sj

yiαi = µj
− µj+1,
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