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a b s t r a c t

In this paper we present a theoretical analysis to understand sparse filtering, a recent and effective
algorithm for unsupervised learning. The aim of this research is not to show whether or how well sparse
filtering works, but to understand why and when sparse filtering does work. We provide a thorough
theoretical analysis of sparse filtering and its properties, and further offer an experimental validation
of the main outcomes of our theoretical analysis. We show that sparse filtering works by explicitly
maximizing the entropy of the learned representations through themaximization of the proxy of sparsity,
and by implicitly preserving mutual information between original and learned representations through
the constraint of preserving a structure of the data. Specifically, we show that the sparse filtering algo-
rithm implemented using an absolute-value non-linearity determines the preservation of a data structure
defined by relations of neighborhoodness under the cosine distance. Furthermore, we empirically validate
our theoretical results with artificial and real data sets, and we apply our theoretical understanding to
explain the success of sparse filtering on real-world problems. Our work provides a strong theoretical
basis for understanding sparse filtering: it highlights assumptions and conditions for success behind this
feature distribution learning algorithm, and provides insights for developing new feature distribution
learning algorithms.

Crown Copyright© 2017 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Unsupervised learning deals with the problem of modeling data,
stated as the problem of learning a transformation which maps
data in a given representation onto a new representation. Con-
trastedwith supervised learning,wherewe are provided labels and
we learn a relationship between the data and the labels, unsuper-
vised learning does not rely on any provided external semantics in
the form of labels. In order to learn, unsupervised learning relies
on the specification of assumptions and constraints that express
our very understanding of the problem of modeling the data; for
example, if we judge that a useful representation of the datawould
be provided by grouping together data instances according to a
specific metric, then we may rely on distance-based clustering
algorithms to generate one-hot representations of the data.

Often, the tacit aim of unsupervised learning is to generate
representations of the data that may simplify the further problem
of learning meaningful relationships through supervised learn-
ing. Coates, Ng, and Lee (2011) clearly showed that very simple
unsupervised learning algorithms (such as k-means clustering),
when properly tuned, can generate representations of the data
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that allow even basic classifiers, such as a linear support vector
machine, to achieve state-of-the-art performances.

One common assumption hard-wired in several unsupervised
learning algorithms is sparsity (for a review on the use of sparsity
in representation learning see Bengio, Courville, & Vincent, 2013).
Sparse representation learning aims at finding a mapping that
produces new representations where few of the components are
active while all of the others are reduced to zero. The adoption
of sparsity relies both on biological analogies and on theoretical
justifications (for discussion on the justification of sparsity see,
for instance, Bengio et al., 2013; Földiák & Young, 1995; Ganguli &
Sompolinsky, 2012; Olshausen & Field, 1997). Several state-of-the-
art algorithms have been developed or have been adapted to learn
sparse representations (for a recent survey of these algorithms, see
Zhang, Xu, Yang, Li, & Zhang, 2015).

1.1. Sparse filtering and related work

In 2011, Ngiam, Chen, Bhaskar, Koh, and Ng (2011) proposed
a novel unsupervised learning framework for generating sparse
representations. Most of the successful unsupervised algorithms
may be described as data distribution learning algorithms that try
to learn new representations which better model the underlying
probability distribution that generated the data. In contrast, they
proposed the possibility of developing feature distribution learning
algorithms that try to learn new representations having desirable
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properties, without the need of taking into account the problem of
modeling the distribution of the data.

Consistently with the feature distribution learning framework,
they defined an algorithmnamed sparse filtering, which ignores the
problem of learning the data distribution and instead focuses only
on optimizing the sparsity of the learned representations. Sparse
filtering proved to be an excellent algorithm for unsupervised
learning: it is extremely simple to tune since it has only a single
hyper-parameter to select; it scales very well with the dimension
of the input; it is easy to implement; and, more importantly,
it was shown to achieve state-of-the-art performance on image
recognition and phone classification (Goodfellow, Erhan, Carrier,
Courville, Mirza, Hamner, Cukierski, Tang, Thaler, Lee, Zhou, Ra-
maiah, Feng, Li, Wang, Athanasakis, Shawe-Taylor, Milakov, Park,
Ionescu, Popescu, Grozea, Bergstra, Xie, Romaszko, Xu, Chuang, &
Bengio, 2013; Ngiam et al., 2011; Romaszko, 2013). Thanks to its
success and to the simplicity of implementing and integrating the
algorithm in already existing machine learning systems, sparse
filtering was adopted in many real-world applications (see, for
instance, the works of Dong, Pei, He, Liu, Dong, & Jia, 2014; Lei, Jia,
Lin, Xing, & Ding, 2015; Raja, Raghavendra, Vemuri, & Busch, 2015;
Ryman, Bruce, & Freund, 2016).

Some studies have also provided sparse filtering with some
biological support. Bruce, Rahman, and Carrier (2016) analyzed dif-
ferent biologically-grounded principles for representation learning
of images, using sparse filtering as a starting point for the definition
of new learning algorithms. Interestingly, Kozlov and Gentner
(2016) used sparse filtering to model the receptive fields of high-
level auditory neurons in the European starling, providing further
support to the general hypothesis that sparsity and normalization
are general principles of neural computation (Carandini & Heeger,
2012).

1.2. Problem statement

So far, sparse filtering has been successfully applied to many
scenarios, and its usefulness repeatedly confirmed (see, for in-
stance, its application in Dong et al., 2014; Han, Lee, Nam, & Lee,
2016; Liu, He, Xie, Gu, Liu, & Pei, 2016; Raja et al., 2015). In
general, however, a clear theoretical explanation of the algorithm
is still lacking. Ngiam et al. (2011) drew connections between
sparse filtering, divisive normalization, independent component
analysis, and sparse coding, while Lederer and Guadarrama (2014)
provided a deeper analysis of the normalization steps inside the
sparse filtering algorithm. However, the reasons why and on what
conditions sparse filtering works are left unexplored. In this paper,
we aim at understanding from a theoretical perspective why and
when sparse filtering works. It is worth clarifying that our work
does not concern itself with showing whether or how well well
sparse filtering works, as there have been abundant evidence in
literature on its successes in different real applications.

We begin by arguing that any unsupervised learning algorithm,
in order to work properly, has to deal with the problem of pre-
serving information conveyed by the probability distribution of the
data. Given that feature distribution learning ignores the problem
of learning the data distribution itself, a natural question arises:
how is the information conveyed by the data distribution preserved in
feature distribution learning and, specifically, in sparse filtering?

The actual success of sparse filtering suggests that the algorithm
is indeed able to preserve relevant information conveyed in the
distribution of the data. However, no explanation for this behavior
has been given. We suggest that information may be preserved
through the preservation of the structure of the data. To under-
stand how this may be, we study the properties of the transforma-
tionswithin the algorithmand pose the following question: is there
any sort of data structure that is preserved by the processing in sparse
filtering?

Through a theoretical analysis we show that sparse filtering
implemented using an absolute-value non-linearity does indeed
retain information through the preservation of the data structure
defined by the relations of neighborhoodness under the cosine
distance. Relying on this, we investigate whether our theoretical
results can be used to explain the success or the failure of sparse
filtering in real applications. In particular we consider the follow-
ing questions: can the success of sparse filtering be explained in
terms of the type of structure preserved? Can the failure of alternative
forms of sparse filtering using different non-linearities be explained
counterfactually on the grounds of information preservation? Is it
possible to identify scenarios in which sparse filtering is likely to be
helpful and other scenarios in which it is likely not to be useful?

1.3. Contributions

We summarize the contributions made in this study as follows:

• We provide a theoretical analysis to understand why and
when sparse filtering works. We show that the standard
sparse filtering algorithm implemented with an absolute-
value non-linearity implicitly works under the assumption
of an intrinsic radial structure of the data. This assumption
naturallymakes the algorithmmore suitable for certain data
sets.

• We empirically validate our main theoretical findings, both
on artificial data and real-world data sets.

• We provide useful insights for developing new feature dis-
tribution learning algorithms based on our theoretical un-
derstanding.

1.4. Organization

The rest of this paper is organized as follows. We first review
the concepts and ideas forming the foundations of our work (Sec-
tion 2). Next, we provide a formal theoretical analysis of the sparse
filtering algorithmbased on a rigorous conceptualization of feature
distribution learning (Section 3). The theoretical results inform the
following experimental simulations (Section 4). We then discuss
the results we collected, in relation to sparse filtering, in particular,
and to feature distribution learning, in general (Section 5). Finally,
we draw conclusions by summarizing our contributions and high-
lighting future developments (Section 6).

To facilitate our presentation, Table 1 summarizes the notation
system used in this manuscript.

2. Foundations

In this section we review basic concepts underlying our study.
We provide a rigorous description of unsupervised learning, we
present its formalization in information-theoretic terms, we for-
malize the property of sparsity, and, finally, we bring all these
concepts together in the definition of the sparse filtering algorithm.

2.1. Unsupervised learning

Let X = {X(i)
∈ RO

}
N
i=1 be a set of N samples or data points

represented as vectors in an O-dimensional space. We will refer
to the given representation of a sample X(i) in the space RO as the
original representation of the sample X(i) and to RO as the original
space. From an algebraic point of view, we can formalize the data
set as a matrix X of dimensions (O× N); from a probabilistic point
of view, we can model the data points X(i) as i.i.d. samples from a
multivariate random variable X = (X1, X2, . . . , XO) with pdf p (X).

Unsupervised learning discovers a transformation f : RO
→

RL mapping the set X from an O-dimensional space to the set
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