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a b s t r a c t

This article is concerned with the fixed-time stabilization for impulsive Cohen–Grossberg BAM neural
networks via two different controllers. By using a novel constructive approach based on some comparison
techniques for differential inequalities, an improvement theorem of fixed-time stability for impulsive
dynamical systems is established. In addition, based on the fixed-time stability theorem of impulsive
dynamical systems, two different control protocols are designed to ensure the fixed-time stabilization of
impulsive Cohen–Grossberg BAM neural networks, which include and extend the earlier works. Finally,
two simulations examples are provided to illustrate the validity of the proposed theoretical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Impulsive dynamical systems can be viewed as a subclass of
hybrid systems and comprised of three parts, i.e., a continuous-
time subsystem, which governs the evolution of the system be-
tween impulsive or resetting events; a difference equation, which
describes the way the state of the system are instantaneously
jumped; and a switching criterion which determines the impulse
moments. The dynamic behaviors of impulsive dynamical systems
have been studied extensively in the aforementioned work, such
as stability, consensus, synchronization and stabilization (Amato,
De Tommasi, & Pironti, 2013; Bai, 2008; He, Qian, & Cao, 2017;
Huang, Li, Duan, & Starzyk, 2012; Kartsatos, 2005; Li, O’Regan, &
Akca, 2015; Li & Wu, 2016; Nersesov & Haddad, 2008; Qiu, Sun,
Yang, et al., 2017; Yang & Lu, 2016).

As well known that bidirectional associative memory (BAM)
neural networks were originally introduced by Kosko (1988),
which generalized the single-layer auto associative Hebbian cor-
relator to a two-layer pattern-matched hetero associative circuit.
Nowadays, the dynamics analysis especially stability analysis for
BAM neural networks has become an attractive research topic due
to their potential application in pattern recognition, automatic
control and imageprocessing (Liu, Jiang, Cao,Wang, &Wang, 2013;
Rajivganthi, Rihan, Lakshmanan, & Muthukumar, 2016). In Liu et
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al. (2013), a continuous stabilizator was designed for stabilizing
the states of stochastic BAM neural networks in finite time, and
then, the finite-time stabilization for a class stochastic BAM neural
networks with parameter uncertainties was considered. In Ra-
jivganthi et al. (2016), authors studied the finite-time stability
for a class of fractional-order Cohen–Grossberg BAM neural net-
works with time delays by using differential mean value theorem
and contraction mapping principle. In 1983, Cohen and Grossberg
firstly proposed a neural network model (Cohen & Grossberg,
1983), which is called Cohen–Grossberg neural networks. The
mathematical properties of this model have received increasing
interest, such as finite-time stability, synchronization, stabilization
and periodic solution (Cai & Huang, 2017; Cohen & Grossberg,
1983; Rajivganthi et al., 2016). For instance, the paper Cai and
Huang (2017) investigated the finite-time synchronization of dis-
continuous Cohen–Grossberg neural networks with mixed time-
delays via state-feedback control.

Note that the finite-time stability, as an important field of sta-
bility analysis, are studied extensively (Amato, Ariola, & Cosentino,
2010; Amato et al., 2013; Cai & Huang, 2017; Cohen & Grossberg,
1983; Ghasemi & Nersesov, 2014; Ghasemi, Nersesov, & Clayton,
2014; Liu, Cao, Yu, & Song, 2016; Liu et al., 2013; Nersesov &
Haddad, 2008; Qiu et al., 2017; Rajivganthi et al., 2016; Sun, Yun, &
Li, 2017; Wang, Zou, Zuo, & Li, 2016; Yang & Lu, 2016). Especially,
one of the important problem of finite-time stability analysis is the
estimation of the settling time. The settling time heavily depends
on the initial conditions of the system, in other words, different
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settling times depend on different initial states. However, in many
practical environment, the knowledge of initial conditions ofmany
research systems such as robotics, smart grids, vehicle monitoring,
physical models, may be hardly accurately obtained, or impossible
to be obtained in advance, which leads to the poor estimation of
the settling time. To overcome this drawback, a new concept called
the fixed-time stability was introduced by Polyakov (2012), if the
system is globally finite-time stable and the settling time function
is bounded for any initial values, that is to say, the convergence
time is regardless of the initial states. Following this route to handle
fixed-time stability, many new approaches and results were ob-
tained (He, Ho et al., 2017; Hu, Yu, Chen, Jiang, & Huang, 2017; Liu
& Chen, 2016; Liu, Yu, Wang, et al., 2017; Lu, Liu, & Chen, 2016;
Ni, Liu, Liu, Hu, & Li, 2017; Polyakov, 2012; Polyakov, Efimov, &
Perruquetti, 2015; Wan, Cao, Wen, & Yu, 2016; Wang, Wu, Huang,
Ren, & Wu, 2016; Yang, Lam, Ho, et al., 2017; Zuo, 2014). For ex-
ample, Polyakov (2012) provided global fixed-time stability of the
closed-loop system by two types of nonlinear control algorithms,
and allowed to adjust a guaranteed settling time independently
on initial conditions. In Hu et al. (2017), the authors presented
a new theorem of fixed-time stability by virtue of reductio ad
absurdum, and the high-precision estimation of the settling-time
was obtained. It was shown that the estimation bound of the
settling time was less conservative and more accurate compared
with the previous results. The paper Ni et al. (2017) proposed a
fast fixed-time nonsingular terminal sliding mode control method
and applied it to design static var compensator controller for chaos
suppression in power systems. In Yang et al. (2017), the authors
introduced the fixed-time synchronization of complex networks
with impulsive effects by designing a new Lyapunov function and
constructing comparison systems.

Motivated by the above analysis, a large number of papers have
considered the finite-time stability and stabilization problem of
impulsive dynamical control systems (Amato et al., 2013; Ners-
esov & Haddad, 2008; Qiu et al., 2017; Yang & Lu, 2016), and a
great deal of results of fixed-time stability and synchronization
for coupled neural networks and coupled complex networks have
been obtained (He, Ho et al., 2017; Hu et al., 2017; Liu & Chen,
2016; Liu et al., 2017; Lu et al., 2016;Ni et al., 2017; Polyakov, 2012;
Polyakov et al., 2015; Wan et al., 2016; Wang, Wu et al., 2016;
Zuo, 2014). Compared with the existing results about fixed-time
stability behavior, there are very few results to dealwith fixed-time
stability of impulsive dynamical system (Yang et al., 2017), due to
the dynamical complexity of the impulsive dynamical systems and
lacking of the theory of fixed-time stability of impulsive dynamical
systems.

To summarize, the paper mainly has the following contribu-
tion: (1) This paper addresses the problem of fixed-time stabil-
ity analysis of impulsive dynamical systems. By using a novel
constructive approach based on some comparison techniques for
differential inequalities, some sufficient conditions are derived to
guarantee the fixed-time stability of impulsive dynamical systems.
It is worth noting that the complexity caused by impulsive dis-
turbance makes it difficult for us to study the fixed-time stability
property of system. As the impulse effects is introduced to the
neural networks, the fixed-time stability analysis for the cannot
be studies with same routine as to the conventional neural net-
work without impulses. Therefore, a new theorem of fixed-time
stability for impulsive dynamical systems is established. (2) The
fixed-time stability property for impulsive dynamical system is a
new concept. In this paper, the convergence time of fixed-time
stability is regardless of the initial states. Furthermore, the bound
of setting-time can be estimated in advance without depending on
any initial conditions but only depending on the designed scalars.
Compared with existing works about some finite-time stability
behaviors of impulsive dynamical systems (Amato et al., 2013;

Nersesov & Haddad, 2008; Qiu et al., 2017; Yang & Lu, 2016), it is
easy to see that fixed-time stability is more appropriate to solve
many real control problems. (3) This paper discusses the impulse
effects, making the study of fixed-time stabilization propertymore
challenging. Based on the proposed theoretical results, it is proved
that the impulsive Cohen–Grossberg BAM neural networks are
fixed-time stable at the equilibrium point under two different
types of control protocols. Two numerical results are presented to
illustrate the validity of the proposed theoretical analysis.

The structure of this paper is as follows. In Section 2, model de-
scription and some necessary definitions, lemma, assumptions are
presented. In Section 3, based on comparison principle and a power
integrator analysis method, a new fixed-time stability theorem for
impulsive dynamical systems is established. Besides, based on the
theorem results, two different controllers are designed to ensure
the fixed-time stabilization of impulsive Cohen–Grossberg BAM
neural networks, which include and extend the earlier works. In
Section 4, two numerical simulations are provided to illustrate the
effectiveness of the theoretical analysis. Finally, Some conclusions
about future research are discussed in Section 5.

2. Model formulation and preliminaries

Consider the following impulsive Cohen–Grossberg BAMneural
networks:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −di(xi(t))
{
ai(xi(t)) −

m∑
j=1

bijfj(yj(t)) − Ii
}
,

t ̸= tk, t ∈ R+,

ẏj(t) = −hj(yj(t))
{
cj(yj(t)) −

n∑
i=1

djigi(xi(t)) − Jj
}
,

t ̸= tk, t ∈ R+,

∆xi|t=tk = −qixi(tk), k ∈ N,

∆yj|t=tk = −ρjyj(tk), k ∈ N,

(1)

for i = 1, 2, . . . , n, j = 1, 2, . . . ,m; N denotes the sets
of positive integers, and R+ denotes nonnegative real numbers.
xi(t) denotes the state vectors of the ith neurons at time t in
X-layer; yj(t) denotes the state vectors of the jth neurons at time
t in Y -layer; respectively, di(xi(t)) represents the amplification
function of the ith neuron in X-layer; hj(yj(t)) represents the
amplification function of the jth neuron in Y -layer; ai(xi(t)) and
cj(yj(t)) denote appropriately behaved functions; bij represents the
connection weight of the jth neuron in Y -layer to the ith neuron
in X-layer; dji represents the connection weight of the ith neuron
in X-layer to the jth neuron in Y -layer; fj(yj(t)) denotes the neuron
activation function of the jth neuron in X-layer; gi(xi(t)) denotes
the neuron activation function of the ith neuron in Y -layer; Ii and
Jj denote the neuron of an external input on the ith neuron in
X-layer and on the jth neuron in Y -layer. For all k ∈ N, ∆xi(tk) =

xi(t+k ) − xi(tk), in which xi(t+k ) = lim
t→tk+0

xi(t), denotes the state

jumps at the impulse instants tk; ∆yj(tk) = yj(t+k ) − yj(tk), in
which yj(t+k ) = lim

t→tk+0
yj(t), denotes the state jumps at the impulse

instants tk. Without loss of generalization, throughout this paper
we assume that xi(t−k ) = lim

t→tk−0
xi(t) = xi(tk), i.e., the solution xi(t)

is left continuous at impulse point; yj(t−k ) = lim
t→tk−0

yj(t) = yj(tk),

i.e., the solution yj(t) is left continuous at impulse point. qi and
ρj are said impulsive control constants. The impulsive sequence
{tk}k∈N satisfies 0 ≤ t0 < t1 < · · · < tk < · · · , lim

k→+∞

tk = +∞.
Throughout this paper, for simplicity, R denotes the sets

of real numbers. Moreover, Rn+m denotes the n + m di-
mensional real spaces. Let x(t) = (x1(t), x2(t), . . . , xn(t))T ,



Download English Version:

https://daneshyari.com/en/article/6863123

Download Persian Version:

https://daneshyari.com/article/6863123

Daneshyari.com

https://daneshyari.com/en/article/6863123
https://daneshyari.com/article/6863123
https://daneshyari.com

