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a b s t r a c t

An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical
system identification and control problems, and convex stability conditions are proposed that are less
conservative than past results. The threemost popular classes of dynamic artificial neural networkmodels
are described, with their mathematical representations and architectures followed by transformations
based on their block diagrams that are convenient for stability and performance analyses. Classes of
nonlinear dynamical systems that are universally approximated by such models are characterized,
which include rigorous upper bounds on the approximation errors. A unified framework and linear
matrix inequality-based stability conditions are described for different classes of dynamic artificial neural
networkmodels that take additional information into account such as local slope restrictions andwhether
the nonlinearitieswithin theDANNs are odd. A theoretical example shows reduced conservatismobtained
by the conditions.

© 2017 Published by Elsevier Ltd.

1. Introduction

Black-box identification of nonlinear dynamical systems using
artificial neural network (ANN) models have been investigated
since the 1980s, with a strong motivation coming from the ability
of ANNs to universally approximate static nonlinear functions
(Cybenko, 1989; Funahashi, 1989; Hornik, 1989). Cybenko (1989)
and Funahashi (1989) proved that an ANN with only one hidden
layer can uniformly approximate any continuous functionwhereas
Hornik (1989) studied the universal approximation property of
multi-layer ANNs. Subsequent papers showed that the functional
range of an ANN is dense for different activation functions (Park &
Sandberg, 1991).

This article1 starts with considering three popular classes of
black-box nonlinear dynamical models:

✩ Preliminary versions of the results in this work were presented in Kim et al.
(2011a, 2011b).
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1 Preliminary versions of the results of this work were presented in conference

proceedings (Kim, Patrón, & Braatz, 2011a, 2011b).

• Neural State-Space Model (NSSM): This state-space model
parameterization for a nonlinear dynamical systemhas non-
linearities parameterized by multilayer feedforward artifi-
cial neural networks (FANNs) with one hidden layer;

• Global Input–Output Model (GIOM): This recursive input–
output parameterization for a nonlinear dynamical system
has nonlinearities parameterized by FANNs;

• Dynamic Recurrent Neural Network (DRNN): This structure
is the same as NSSM except with an additional linear recur-
sive term in the state equation.

Stability analysis and controller synthesis based on robust control
theory has been extensively studied for NSSMs (Suykens, Moor, &
Vandewalle, 1995; Suykens, Vandewalle, &Moor, 1996), which can
be rather parsimonious models for some nonlinear dynamical sys-
tems. The GIOM allows the future outputs of the dynamical system
to be determined purely from a finite number of past observations
of the system’smeasured inputs and outputs (Billings, Jamaluddin,
& Chen, 1992; Levin & Narendra, 1995a; Narendra & Parthasarthy,
1990). Since both inputs and outputs to the network are directly
observable at each instant of time, static backpropagation or any
other supervised training method of system identification can be
used to train the network. The application to the adaptive control
has been extensively studied (Antsaklis, 1990; Ge & Wang, 2002;
Narendra & Mukhopadhyay, 1997). Although similar to NSSMs,
DRNNs are more extensively studied in the literature, including
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for large FANNs (Hopfield, 1982; Pineda, 1989). DRNNs have been
argued as being well suited for modeling associative memories,
and the identification and analysis of DRNNs have been extensively
investigated in recent years (Fang&Kincaid, 1996;Grujic &Michel,
1991; Jin, Nikiforuk, & Gupta, 1995; Michel, Farrel, & Porod, 1989).

The ability of the three classes of DANNs to universally ap-
proximate nonlinear dynamical systems rely on the universal
approximation capability of ANNs for static nonlinear functions.
Whilemany results have been reported in the literature, this paper
presents all three DANNmodels in a common representationwhile
filling in the theoretical gaps in the literature, which serves as a
capstone to the topic. The common representation is argued to be
a useful model structure in its own right, due to its inheritance of
all of the universal approximation properties with error bounds
derived for the three DANN models.

This paper also considers the stability analysis of DANNmodels,
which is a topic that has been investigated by many researchers
(see Michel & Liu, 2002; Suykens et al., 1996 and references cited
therein). Stability analysis and the convergence of the state trajec-
tories to equilibria have been studied for DRNNs, with sufficient
stability conditions derived using diagonal quadratic Lyapunov
functions (Michel et al., 1989) and matrix measures (Fang &
Kincaid, 1996). NSSMs have been analyzed by reformulation as
NLq systems for which sufficient conditions for global asymptotic
stability (g.a.s.) and input–output stability can be applied (Suykens
et al., 1996). However, existing stability conditions are problem-
dependent in the sense of being applicable only to specific struc-
tures of parameterized models, not to a general representation of
DANN models. To construct unified analysis tools, we show that
any DANN can be represented in a standard nonlinear operator
form (SNOF) and we derive polynomial-time sufficient conditions
for the stability of a DANN based on its corresponding SNOF. We
also show how existing results in literature can be applied to sta-
bility analysis, which are compared to the new stability conditions
from a theoretical point of view and with a numerical example.

This paper is organized as follows. Section 2 presents some
mathematical notation, definitions, and preliminaries onANNs and
DANNs. Section 3 presents the mathematical descriptions for the
three different classes of DANNs with a common block diagram
representations to help the reader understand their structures and
differences. The approximationproperties for eachmodel are given
with proofs. Section 4 argues that the common block diagram
representation could form the basis for the development of new
process identification algorithms and shows the representations
of DANNs in terms of the SNOF. Section 5 uses a modified Lur’e–
Postnikov function to produce less conservative conditions for
g.a.s. for the different classes of SNOFs that represent the DANNs.
Section 6 discusses several stability conditions that are applicable
to the DANNs. Section 7 concludes the paper.

2. Background

2.1. Mathematical notations and definitions

The notation used in this paper is standard: Z+ and R+ denote
the set of all nonnegative integers and the set of all nonnegative
real numbers, respectively; ∥ · ∥ is the Euclidean norm for vectors,
or the corresponding induced matrix norm for matrices; 0 and
I denote the null matrix whose components are all zeros and
the identity matrix of compatible dimension, respectively; the
superscript T denotes the transpose of a matrix; ℓn2 is the set of
all measurable essentially bounded functions from Z+ to Rn with
ℓn2-norm defined by ∥f ∥ℓn2

≜
∑

∞

k=0∥f (k)∥ < ∞ and ℓn
∞

is the
set of all measurable essentially bounded functions from Z+ to Rn

with ℓn
∞
-norm defined by ∥f ∥ℓn∞ ≜ max1≤i≤n

{
supk≥0|fi(k)|

}
< ∞,

where the subscript i denotes the ith element of a vector. For a

truncated signal, f[0,κ](k) is defined to have the same value as f (k)
at k ∈ [0, κ], κ < ∞, and is zero for all k > κ; Cp(X ) denotes
the set of p-times continuously differentiable functions on an open
set X ; L1(X ) denotes the set of integrable functions on an open
set X ; X p denotes the Cartesian product of X with itself p times;
ιp is the p-Cartesian product of the interval [0, 1]. The maximum
singular value of a matrix M ∈ Rn×n is denoted by σ̄ (M) and
the spectral radius of M is denoted by ρ(M). If M = MT then
all the eigenvalues of M are real and λmax(M) denoted the largest
eigenvalue. IfM = MT thenM > 0 andM < 0 denote thematrix is
positive and negative definite, respectively. Let n andm be positive
integers and partition M ∈ R(n+m)×(n+m) as M =

[
A B
C D

]
where

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m. For a matrix
∆ ∈ Rm×m such that I−D∆ is invertible, define the linear fractional
transformation Fl(M, ∆) ≜ A+B∆(I−D∆)−1C . This transformation
can be used to define an uncertain autonomous discrete-time
system: xk+1 = Fl(M, ∆)xk. Similarly, for Ω ∈ Rn×n such that
I − AΩ is invertible, define Fu(M, Ω) ≜ D + CΩ(I − AΩ)−1B. This
transformation can be used to define a transfer function matrix,
e.g., G(z) := D + C(zI − A)−1B = Fu(M, 1

z I). Define the system
norm ∥G∥∞ ≜ max0≤θ≤2π σ̄ (G(ejθ )) induced by signal 2-norms on
the input and output vectors.

The notation of Levin and Narendra (1995b) will be used to
describe an ANN: An ANN with only forward connections (called a
forward ANN, or FANN) containing L layers of neurons with (L− 2)
hidden layers, each onewith i2, i3, . . . , iL−1 neurons respectively, is
represented byN L−1

i1,i2,...,iL
. This network has i1 inputs and iL outputs.

Therefore, a FANNwith 3 inputs, 4 neurons at the hidden layer, and
2 outputs is represented by N 2

3,4,2.
This paper considers discrete-time nonlinear dynamical sys-

tems of the form xk+1 = f (xk, uk, k), yk = g(xk, uk, k), where f
is locally Lipschitz in all of its arguments, g is continuous in all
of its arguments such that the existence of unique solution x is
guaranteed, and x ∈ Rn, u ∈ Rnu , and y ∈ Rny are the state,
control input, and output, respectively. The Lipschitz condition
for the state transition map f and the continuity of the output
map g are common assumptions used to guarantee the existence
of unique solution and assumed to hold for all system equations
in this paper, although it might appear as different forms. The
subscript k denotes the time instant k ∈ Z+.

2.2. Architecture of artificial neural networks

An Artificial Neural Network (ANN) is capable of arbitrarily
closely approximating nonlinear functional relationships between
bounded input and output variables in the sense that the approxi-
mation error can be enforced to be measure zero (Cybenko, 1989;
Funahashi, 1989; Hornik, 1989; Park & Sandberg, 1991; Sjöberg,
Hjalmarsson, & Ljung, 1994). The basic processing elements of an
ANN are referred to as neurons, a collection of neurons is referred
to as a layer, and the collection of interconnected layers forms the
ANN. The way in which these layers are connected to each other is
known as the architecture of the ANN. A neuron, as in Fig. 1a, is a
processing element of the form: y = γ

(∑m
j=1vjaj + β

)
where γ (·)

represents a nonlinear function known as an activation function,
vT

= [v1, v2, . . . , vm] represents a connection parameter vector or
weight vector between the neuron and the previous layer, aj repre-
sents the input signals from the previous layer into the neuron, and
β represents a bias term. Each neuron is a parameterized mapping
γ : Rm

→ R. The activation function γ (·) is usually chosen to be a
monotonic C1 function bounded in the interval [0, 1] or the interval
[−1, 1].

The most common ANN architecture is the Feedforward ANN
(FANN) (see Fig. 1b): yi = γ

(∑h
j=1Wijγ

(∑m
p=1Vjpup + βj

))
for

i = 1, 2, . . . , l, where V ∈ Rh×m, and Vjp represents the weight
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