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a b s t r a c t

The largest family of density-ratio based estimators is obtained for unnormalized statistical models under
the assumption of properness. They do not require normalization of the probability density function
(PDF) because they are based on the density ratio of the same PDF at different points; therefore, the
multiplicative normalization constant cancels out. In contrast withmost existing work, a single necessary
and sufficient condition is given here, rather than merely sufficient conditions for proper criteria for
estimation. The condition implies that an extended Bregman divergence frameworkwith data-dependent
noise (Gutmann & Hirayama, 2011) gives the largest family of proper criteria in the present case. This
properness yields consistent estimation as long as some mild conditions are satisfied. The present study
shows that the above-mentioned framework gives an ‘‘upper bound’’ for attempts to extend Hyvärinen’s
score matching and therefore provides a perspective for studies in this direction.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The intractability of normalization is a major computational
bottleneck in machine learning with complex statistical models.
Consequently, the probability distribution is known only up to
a multiplicative normalization constant in many cases. A typical
example is deep learning, where contrastive divergence (CD; Hin-
ton, 2002) is used to avoid this difficulty (Hinton, Osindero, &
Teh, 2006; Roux & Bengio, 2008). Similar problems appear in var-
ious other applications (Gutmann & Hyvärinen, 2013a), including
graphical models (Koller, Friedman, Getoor, & Taskar, 2007), unsu-
pervised feature learning (Bengio, Courville, &Vincent, 2012), com-
putational neuroscience (Gutmann & Hyvärinen, 2013b; Köster
& Hyvärinen, 2010), modeling of images (Li, 2009; Rangarajan &
Chellappa, 1995), natural language processing (Bengio, Ducharme,
Vincent, & Jauvin, 2003), and social networks (Robins, Pattison,
Kalish, & Lusher, 2007).

Approaches to the estimation of unnormalized statistical mod-
els can be classified as follows. Typical strategies used to avoid
normalization are elimination, estimation, and approximation. The
normalization constant is eliminated by criteria based on (log f )′
or f (v)/f (u) for a probability density function (PDF) f (x) in the
elimination strategy. In the estimation strategy, the normalization
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constant is regarded as an additional unknown parameter and
is estimated together with the original unknown parameters in
the statistical model. In the approximation strategy, f is replaced
by an approximation. The algorithms can also be divided into
deterministic methods and stochastic methods (here, Monte Carlo
methods). Pseudorandom numbers are used in the latter methods,
and so the result changes for every run. Existing methods are
classified in Table 1 (Gutmann&Hyvärinen, 2013a; Sohl-Dickstein,
Battaglino, & DeWeese, 2011).

Score matching (SM; Hyvärinen, 2005) is a deterministic
method that avoids normalization. It uses only the ratios f ′/f and
f ′′/f in its criterion so that it sidesteps the normalization problem.
Ratio matching (RM; Hyvärinen, 2007b) and generalized score
matching (GSM; Lyu, 2009) provide extensions for discrete data.
GSM also gives a rich family of estimators for continuous data:
in this case Lf /f is used instead of f ′/f in SM for an arbitrary
linear operator L. Another wide extension of SM can be found in
the generic forms of local estimators investigated in the theory of
local scoring rules (LSRs; Ehm & Gneiting, 2012; Parry, Dawid, &
Lauritzen, 2012).

In noise-contrastive estimation (NCE; Gutmann & Hyvärinen,
2010, 2012), the normalization constant is estimated through
discrimination between the observed data and some artificially
generated noise. Its extension (Pihlaja, Gutmann, & Hyvärinen,
2010) is also classified to the same category: the parameters and
the normalization constant are obtained simultaneously by min-
imization of an objective functional. Their further extension is
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Table 1
Approaches to estimation of unnormalized models. From left to right: (Gener-
alized) score matching, ratio matching, local scoring rules, Bregman divergence
framework with data-dependent noise, noise-contrastive estimation, mean field
theory, variational Bayes techniques, pseudolikelihood, minimum probability flow
learning, Monte Carlo maximum likelihood estimation, and contrastive divergence.
BDF-DDN appears twice because it can be used in multiple ways.

Elimination Estimation Approximation

Deterministic (G)SM, RM,LSR, BDF-DDN MF, VB, PL, MPF
Monte Carlo BDF-DDN NCE MCML, CD

given by the Bregman divergence framework (BDF; Gutmann &
Hirayama, 2011). BDF is flexible enough to be used across several
of the strategies in Table 1. In particular, the normalization con-
stant is eliminated in BDF with data-dependent noise (BDF-DDN;
Gutmann & Hirayama, 2011), which gives yet another extension of
SM. Though BDF-DDN is used in a Monte Carlo style in Gutmann
and Hirayama (2011), it can be viewed as a sum of randomly
selected deterministic criteria. Since each of these criteria yields a
stand-alone deterministic estimator, BDF-DDN also appears in the
‘‘deterministic’’ row in Table 1.

The normalization constant is directly approximated in Monte
Carlo maximum likelihood (MCML) estimation (Delman, 2002;
Geyer, 1994), which can lead to an estimate with large variance
unless the random sampling is designed carefully (Gutmann &
Hyvärinen, 2013a; Pihlaja et al., 2010). CD approximates the gradi-
ent of the log-likelihood by the Markov chain Monte Carlo method
instead of solving an intractable integration problem. The Markov
chain in CD is replaced with a deterministic flow on the set of
probability distributions in minimum probability flow learning
(MPF; Sohl-Dickstein et al., 2011). Pseudolikelihood (PL; Besag,
1975) approximates the joint probability distribution as a compu-
tationally tractable product of conditional distributions.Mean field
(MF) theory and variational Bayes (VB) techniques (Attias, 2000;
Kappen & Rodríguez, 1997; Tanaka, 1998) are also in the same
category. A variety of methods based on sampling and numerical
integration have also been studied (Haykin, 2008).

Several conditions have been proposed for being a ‘good’ esti-
mator in statistics. One basic condition is consistency (Lehmann &
Casella, 1998), which is the requirement that the estimate should
converge to the true value as the sample size increases. For ex-
ample, maximum likelihood estimation (MLE) is well known to be
consistent in general and can be used for a wide variety of appli-
cations in regular models (Lehmann & Casella, 1998). Construction
of a consistent estimator is not trivial for unnormalized statistical
models, however. MLE is intractable because the calculation of
the normalization constant is not feasible in this case. Among the
existingmethods classified in Table 1, SM, NCE, LSR, GSM, and BDF-
DDN are known to realize consistent estimation for unnormalized
statistical models. However, theoretical analysis of CD is difficult
in spite of its practical usefulness (Carreira-Perpigñán & Hinton,
2005).

In contrast to most existing work, this paper gives a single nec-
essary and sufficient condition rather thanmerely sufficient condi-
tions for proper criteria for estimation. The concept of properness
is defined in Section 2.3; it yields consistent estimation as long as
some mild conditions are satisfied. Though properness is a mini-
mum requirement for usefulness, it logically implies an extended
BDF-DDN from the above necessary and sufficient condition. In
other words, this extended BDF-DDN gives the largest family of
proper criteria under some assumptions.

Estimators based on density ratios are attracting a great deal
of attention (Fishman, 1996; Sugiyama, Kawanabe, & Chui, 2010;
Sugiyama, Suzuki, & Kanamori, 2012) for various statistical data
processing tasks (Bickel, Bogojeska, Lengauer, & Scheffer, 2008;
Hido, Tsuboi, Kashima, Sugiyama, & Kanamori, 2008; Shimodaira,

2000; Storkey & Sugiyama, 2007; Sugiyama, Krauledat, & Müller,
2007; Sugiyama, Takeuchi, Suzuki, Kanamori, & Hachiya, 2009;
Suzuki & Sugiyama, 2009a, b; Suzuki, Sugiyama, Kanamori, & Sese,
2009; Suzuki, Sugiyama, Sese, & Kanamori, 2008; Zadrozny, 2004).
So we focus on the deterministic elimination approach for contin-
uous data, andwe investigate estimators based on the density ratio
of the same PDF f (x) at different points. A typical example of such
estimators is provided byminimization of the sample average over

M(x) = log
(
1 +

f (x + a)
f (x)

)
+ log

(
1 +

f (x − a)
f (x)

)
(1)

with a positive constant a > 0 (Gutmann & Hirayama, 2011).
This paper is organized as follows. Section 2 presents the defini-

tion of the unnormalized statistical model, the motivation for our
approach, and the framework for estimation based on self density
ratios. Section 3 gives the largest family of proper criteria for esti-
mation in two equivalent styles: a generic form for proper criteria
and the Bregman divergence framework. Section 4 concludes the
paper.

The contents in Sections 2.1, 2.3, and 3.2 have been reported
briefly in Hiraoka, Hamada, and Hori (2014) withoutmathematical
proof. In this paper, we give the mathematical proofs along with a
detailed discussion of our approach.

2. Background and overview

2.1. Unnormalized statistical model

We consider the estimation of an unnormalized statistical
model G = (g,Θ). The model G represents a family of PDFs for
a random vector X ,

f (x; θ ) =
1

C(θ )
g(x; θ ), x = (x1, . . . , xN ) ∈ X ⊂ RN

with a given function g > 0 and a vector of unknown parameters

θ = (θ1, . . . , θK ) ∈ Θ ⊂ RK ,

where R is the set of real numbers. The calculation of

C(θ ) =

∫
X
g(x; θ ) dx > 0

is assumed to be intractable throughout this paper. Let θ∗
∈ Θ

be the true vector of parameters, which we aim to estimate from
i.i.d. samples x(1), . . . , x(n) ∼ f ( · ; θ∗), without using C(θ )
explicitly. In particular, we consider estimators θ̂ of the form

θ̂ = argmin
θ

1
n

∑
t

M(x(t); θ )

for some penalty criterionM , which is called a scoring rule (Ehm &
Gneiting, 2012; Parry et al., 2012).

Smoothness of functions is supposed implicitly and the term
‘‘almost surely (all)’’, which means ‘‘except for probability (mea-
sure) zero’’, is omitted throughout the discussion below.

2.2. Limitation of local estimators

Before describing our approach, we point out a limitation of
local estimators to motivate the use of non-local estimators. We
consider the one-dimensional case N = K = 1 for simplicity in
this subsection. SM is local in the sense that its criterion

MSM(x; θ ) =

∂2

∂x2
g(x; θ )

g(x; θ )
−

1
2

(
∂
∂xg(x; θ )
g(x; θ )

)2

depends on only g and its derivatives at the observed sample x; it
never uses g(x + 3), for example. Though this design looks natural
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