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a b s t r a c t

Single hidden layer feedforward neural networks (SLFNs) with fixed weights possess the universal
approximation property provided that approximated functions are univariate. But this phenomenon does
not lay any restrictions on the number of neurons in the hidden layer. The more this number, the more
the probability of the considered network to give precise results. In this note, we constructively prove
that SLFNs with the fixed weight 1 and two neurons in the hidden layer can approximate any continuous
function on a compact subset of the real line. The proof is implemented by a step by step construction
of a universal sigmoidal activation function. This function has nice properties such as computability,
smoothness and weak monotonicity. The applicability of the obtained result is demonstrated in various
numerical examples. Finally, we show that SLFNs with fixed weights cannot approximate all continuous
multivariate functions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Approximation capabilities of single hidden layer feedforward
neural networks (SLFNs) have been investigated in many works
over the past 30 years. Typical results show that SLFNs possess the
universal approximation property; that is, they can approximate
any continuous function on a compact set with arbitrary precision.

An SLFN with r units in the hidden layer and input x =

(x1, . . . , xd) evaluates a function of the form
r∑

i=1

ciσ (wi
· x − θi), (1.1)

where the weights wi are vectors in Rd, the thresholds θi and the
coefficients ci are real numbers, and the activation function σ is a
univariate function. Properties of this neural network model have
been studied quite well. By choosing various activation functions,
many authors proved that SLFNs with the chosen activation func-
tion possess the universal approximation property (see, e.g., Chen
and Chen, 1993; Chui and Li, 1992; Costarelli and Spigler, 2013;
Cotter, 1990; Cybenko, 1989; Funahashi, 1989; Gallant andWhite,
1988; Hornik, 1991; Mhaskar and Micchelli, 1992). That is, for any
compact set Q ⊂ Rd, the class of functions (1.1) is dense in C(Q ),
the space of continuous functions on Q . The most general and
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complete result of this type was obtained by Leshno, Lin, Pinkus,
and Schocken (1993). They proved that a continuous activation
function σ has the universal approximation property (or density
property) if and only if it is not a polynomial. This result has shown
the power of SLFNs within all possible choices of the activation
function σ , provided that σ is continuous. For a detailed review
of these and many other results, see Pinkus (1999).

In many applications, it is convenient to take the activation
function σ as a sigmoidal functionwhich is defined as

lim
t→−∞

σ (t) = 0 and lim
t→+∞

σ (t) = 1.

The literature on neural networks abounds with the use of such
functions and their superpositions (see, e.g., Cao and Xie, 2010;
Chen and Cao, 2009; Chui and Li, 1992; Costarelli, 2015; Costarelli
and Spigler, 2013; Costarelli and Vinti, 2016a, b, c, 2017; Cybenko,
1989; Funahashi, 1989; Gallant andWhite, 1988; Hahm and Hong,
2004; Iliev, Kyurkchiev, and Markov, 2017; Ito, 1992; Kůrková,
1992;Mhaskar andMicchelli, 1992). The possibility of approximat-
ing a continuous function on a compact subset of the real line or
d-dimensional space by SLFNswith a sigmoidal activation function
has been well studied in a number of papers.

In recent years, the theory of neural networks has been de-
veloped further in this direction. For example, from the point of
view of practical applications, neural networks with a restricted
set of weights have gained a special interest (see, e.g., Draghici,
2002; Ismailov, 2012, 2015; Ismailov and Savas, 2017; Jian, Yu, and
Jinshou, 2010; Liao, Fang, and Nuttle, 2004). It was proved that
SLFNswith some restricted set ofweights still possess the universal
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approximation property. For example, Stinchcombe and White
(1990) showed that SLFNs with a polygonal, polynomial spline or
analytic activation function and a bounded set of weights have
the universal approximation property. Using monotone sigmoidal
functions, Ito (1992) investigated this property for networks with
weights located only on the unit sphere. In Ismailov (2012, 2015)
and Ismailov and Savas (2017), one of the coauthors considered
SLFNs with weights varying on a restricted set of directions and
gave several necessary and sufficient conditions for good approx-
imation by such networks. For a set W of weights consisting of
two directions, he showed that there is a geometrically explicit
solution to the problem. Hahm and Hong (2004) went further
in this direction, and showed that SLFNs with fixed weights can
approximate arbitrarily well any univariate function. Since fixed
weights reduce the computational expense and training time, this
result is of particular interest. In a mathematical formulation, the
result reads as follows.

Theorem 1.1 (Hahm and Hong, 2004). Assume f is a continuous
function on a finite segment [a, b] of R. Assume σ is a bounded
measurable sigmoidal function on R. Then for any sufficiently small
ε > 0 there exist constants ci, θi ∈ R and positive integers K and n
such that⏐⏐⏐⏐⏐f (x) −

n∑
i=1

ciσ (Kx − θi)

⏐⏐⏐⏐⏐ < ε

for all x ∈ [a, b].

Note that in this theorem both K and n depend on ε. The
smaller the ε, the more neurons in the hidden layer one should
take to approximatewith the required precision. This phenomenon
is pointed out as necessary in many papers. For various activation
functions σ , there are plenty of practical examples, diagrams, ta-
bles, etc. in the literature, showing how the number of neurons
increases as the error of approximation gets smaller.

It is well known that one of the challenges of neural networks
is the process of deciding optimal number of hidden neurons. The
other challenge is understanding how to reduce the computational
expense and training time. As usual, networks with fixed weights
best fit this purpose. In this respect, Cao andXie, 2010 strengthened
the above result by specifying the number of hidden neurons to re-
alize approximation to any continuous function. By implementing
modulus of continuity, they established upper bound estimations
for the approximation error. It was shown in Cao and Xie (2010)
that for the class of Lipschitz functions LipM (α) with a Lipschitz
constant M and degree α, the approximation bound is M(1 +

∥σ∥)(b − a)n−α , where ∥σ∥ is the sup of σ (x) on [a, b].
Approximation capabilities of SLFNs with a fixed weight were

also analyzed in Lin, Guo, Cao, and Xu (2013). Taking the activation
function σ as a continuous, even and 2π-periodic function, the
authors of Lin et al. (2013) showed that neural networks of the
form

r∑
i=1

ciσ (x − xi) (1.2)

can approximate any continuous function on [−π, π] with an
arbitrary precision ε. Note that all the weights are fixed equal to
1, and consequently do not depend on ε. To prove this, they first
gave an integral representation for trigonometric polynomials, and
constructed explicitly a network formed as (1.2) that approximates
this integral representation. Finally, the obtained result for trigono-
metric polynomials was used to prove a Jackson-type upper bound
for the approximation error.

In this paper, we construct a special sigmoidal activation func-
tion which meets both the above mentioned challenges in the

univariate setting. In mathematical terminology, we construct a
sigmoidal function σ for which K and n in the above theorem do
not depend on the error ε. Moreover, we can take K = 1 and
n = 2. That is, only parameters ci and θi depend on ε. Can we
find these numbers? For a large class of functions f , especially for
analytic functions, our answer to this question is positive. We give
an algorithm and a computer program for computing these num-
bers in practice. Our results are illustrated by several examples.
Finally, we show that SLFNs with fixed weights are not capable of
approximating all multivariate functions with arbitrary precision.

To construct our sigmoidal function σ and prove themain theo-
rem (see Theorem 4.1), we extensively use so calledmonic polyno-
mials with rational coefficients. To the best of our knowledge, the
idea of using monic polynomials is new in the numerical analysis
of neural networkswith limited number of hidden neurons. In fact,
if one is interested more in a theoretical than in a practical result,
then any countable dense subset of C[0, 1] suffices. Maiorov and
Pinkus (1999) used such a subset to prove existence of a sigmoidal,
monotonic and analytic activation function, and consequently a
neural network with a fixed number of hidden neurons, which
approximates arbitrarily well any continuous function. Note that
the result of Maiorov and Pinkus (1999) is of theoretical value
and the authors of Maiorov and Pinkus (1999) did not suggest
constructing and using their sigmoidal function. In our previous
work Guliyev and Ismailov (2016), we exploited a sequence of all
polynomials with rational coefficients to construct a new universal
sigmoidal function. Note that in Guliyev and Ismailov (2016) the
problem of fixing weights in approximation by neural networks
was not considered. Although the construction in Guliyev and
Ismailov (2016) was efficient in the sense of computation of that
sigmoidal function, some serious difficulties appeared while com-
puting an approximating neural network parameters for some
relatively simple approximated functions (see Remark 2 in Guliyev
and Ismailov, 2016). The usage of monic polynomials in this in-
stance turnedout to be advantageous in reducing ‘‘running time’’ of
the algorithm for computing the mentioned network parameters.
This allows us to approximate various functions with sufficiently
small precision and obtain all the required parameters in practice
(see the numerical results in Section 5).

2. Construction of a sigmoidal function

In this section, we construct algorithmically a sigmoidal func-
tion σ which we use in our main result in the following section.
Besides sigmoidality, we take care about smoothness and mono-
tonicity of our σ in the weak sense. Here by ‘‘weak monotonicity’’
we understand behavior of a functionwhose difference in absolute
value from a monotonic function is a sufficiently small number.
In this regard, we say that a real function f defined on a set X ⊆

R is called λ-increasing (respectively, λ-decreasing) if there exists
an increasing (respectively, decreasing) function u : X → R such
that |f (x) − u(x)| ≤ λ for all x ∈ X (see Guliyev and Ismailov,
2016). Obviously, 0-monotonicity coincideswith the usual concept
of monotonicity, and a λ1-increasing function is λ2-increasing if
λ1 ≤ λ2.

To start with the construction of σ , assume that we are given
a closed interval [a, b] and a sufficiently small real number λ. We
construct σ algorithmically, based on two numbers, namely λ and
d := b − a. The following steps describe the algorithm.

1. Introduce the function

h(x) := 1 −
min{1/2, λ}

1 + log(x − d + 1)
, x ∈ [d, +∞).

Note that this function is strictly increasing on [d, +∞) and satis-
fies the following properties:
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