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In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper
proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According
to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within
finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are
determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear
recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus
the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various
different situations have been considered by setting different coefficient matrices of general time-varying
LMEs and a great variety of computer simulations (including the application to robot manipulators) have
been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent
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1. Introduction

Linear matrix equations (LMEs) are omnipresent in control
theory (De Queiroz, Dawson, Nagarkatti, & Zhang, 2012; Zhou,
Duan, & Lin, 2011), optimization (Jin & Zhang, 2015a), signal
processing (Xia, Sun, & Zheng, 2012), robotics (Zhang, Li, Zhang,
Luo, & Li, 2015), and multi-agent systems (Zhang, Li, Qu, &
Lewis, 2015). In mathematics, the general LME is expressed in the
form:

p
> AXB, =C e R™™, (1)
k=1

where A, € R™" and B, € R™™ (withk = 1,2, ..., p) represent
coefficient matrices; C € R™*™ represents an arbitrary coefficient;
and X(t) € R™™ represents an unknown matrix that needs to
be solved. The well-known matrix inversion equation, Lyapunov
equation, and Sylvester equation can be deemed as some particular
cases of general LMEs when coefficient matrices are set as different
values. For example, if p = 2, and B; = A, = [ (with I being
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identity matrix of conforming dimensions), then Eq. (1) is called
the Sylvester equation. The Lyapunov equation can also be derived,
aslongasp = 2,B; = A, = I, and B, = Al. It is worth pointing
out that these LMEs have an important role in the stability analysis
of linear control systems and also participate in the theoretical
developments of some nonlinear systems. Therefore, there are
tremendous amount of methods (Benner & Breiten, 2014; Ding
& Chen, 2005; Ding & Zhang, 2014; Hajarian, 2016; Peng, Hu, &
Zhang, 2005; Simoncini, 2016; Wu & Chang, 2016) that have been
developed and studied for the real-time solution of LMEs, including
matrix inversion equation, Sylvester equation, Lyapunov equation,
and so on.

Most of methods for LMEs appeared in the literature can be
grossly classified into two categories: the first is the serial method
(e.g., iterative algorithms), and the second one is the parallel
method (e.g., neural networks). For the serial method, the iterative
algorithm is one of the most typical representative. For example,
an iteration method is constructed in Peng et al. (2005) to solve
the linear matrix equation AXB = C. By this iteration method,
the solvability of the equation AXB = C can be determined
automatically. In Wu and Chang (2016), two novel iterative al-
gorithms are presented to solve the Lyapunov matrix equations
appearing in discrete-time periodic linear systems. In Benner
and Breiten (2014), some optimality results for the approximation
of large-scale matrix equations are discussed. In particular, this
includes the special case of Lyapunov and Sylvester equations.
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In Ding and Chen (2005), Ding and Zhang (2014) and Hajarian
(2016), some gradient-based iterative algorithms are proposed
for solving LMEs, including Sylvester equation and the coupled
matrix equations. More computational methods for linear matrix
equations are reviewed in Simoncini (2016). It is worth pointing
out that iterative algorithms for general LMEs usually lead to the
high computational complexity due to their inherent drawbacks.
Furthermore, when iterative algorithms are applied to general
time-varying LMEs, they should be finished within every sampling
period. If not, the algorithms will not accomplish the calcula-
tion in a sampling period, which indicates the failure of iterative
algorithms.

For the parallel method, the recurrent neural network (RNN)
is one of the most typical representative, which found a great of
applications in the past decades (Jin & Zhang, 2015b; Liao, Zhang,
& Jin, 2016; Liu, Li, Tong, & Chen, 2016; Yu, Shi, Dong, Chen, &
Lin, 2015). Different from many conventional iterative algorithms,
RNNSs can be realizable on specific parallel and distributed hard-
ware architectures (Hosseini, 2016; Peng, Wu, Song, & Shi, 2017,
Qin, Liu, Xue, & Wang, 2016; Song, Yan, Zhao, & Liu, 2016; Tu,
Cao, & Hayat, 2016; Xiao, 2017a, b). This can highly enlarge utility
of current RNNs towards various potential application domains
and toward high-performance computing. As competitive com-
putational tools, RNNs play an important role in solving general
LMEs (Li, Chen, & Liu, 2013; Xiao, 2015; Xiao & Liao, 2016; Xiao &
Lu, 2015; Xiao & Zhang, 2011, 2012; Yi, Chen, & Lan, 2013; Yi, Chen,
& Lu, 2011; Zhang, Chen, Li, Yi, & Zhu, 2008; Zhang & Ge, 2005;
Zhang, Jiang, & Wang, 2002). For example, gradient-based RNNs
are developed for solving time-invariant LMEs, and the solution
errors can decrease to zero when time goes to infinity (Vi et al.,
2013, 2011; Zhang et al., 2008). In contrast, for the time-varying
case, the solution errors are always oscillating since the velocity
compensation of time-varying coefficients is not considered. Zhang
neural network (ZNN) is thus proposed to solve various time-
varying problems, which has a significant improvement in con-
vergence property (Xiao & Zhang, 2011, 2012; Zhang & Ge, 2005;
Zhang et al., 2002). In comparison with the gradient-based RNNs,
ZNN can avoid the oscillation of the solution errors effectively and
can converge to the theoretical solutions of time-varying LMEs
exponentially. After that, a novel nonlinear function (termed the
sign-bi-power function) is presented to activate ZNN for time-
varying LMEs such that its convergence property can achieve the
finite time convergence (Li, Chen et al., 2013; Xiao & Liao, 2016).
However, owing to the deep investigation, the sign-bi-power ac-
tivation function has a relatively redundant formulation for finite-
time convergence. Therefore, the convergence speed of ZNN can be
further improved by optimizing the structure of the sign-bi-power
activation function.

Different from the previous study, in this paper, a general
framework of nonlinear RNNs for general time-varying LMEs is
first proposed on basis of ZNN with the global stability ensured.
Then, in order to expedite the finite-time convergence, two novel
nonlinear functions are presented to activate the general nonlinear
RNN. As compared to the sign-bi-power activation function, the
proposed two novel nonlinear functions are of simpler structure,
and are convenient for computer simulations as well as hardware
implementations. More importantly, the resultant two nonlinear
RNNs possess a better convergence property, when compared to
the existing neural networks. The main contributions of this work
can be summed up as below.

(1) This paper focuses on general time-varying linear matrix
equations (LMEs) solving, instead of the specific matrix
equation (e.g., Sylvester equation) or general time-invariant
LMEs solving.

(2) A general framework of nonlinear recurrent neural net-
works (RNNs) is proposed for general time-varying LMEs
with the global stability ensured.

(3) Two novel nonlinear functions are presented to activate
the general nonlinear RNN model, and thus two specific
nonlinear RNNs are proposed for general time-varying LMEs
solving. In addition, their theoretical analyses are given out
to ensure the better finite-time convergence property.

(4) The existing neural networks are applied to general time-
varying LMEs solving for comparative purposes, and the
extensive simulation results (including the application to
robot manipulators) validate the effectiveness and better
finite-time convergence of the proposed two nonlinear
RNNs for general time-varying LMEs.

2. Problem formulation and model

In this part, we consider the following general time-varying
linear matrix equation (LME), which incorporates time-invariant
LME (1) as a special case (Li, Chen et al., 2013; Yietal.,2011; Zhang
& Ge, 2005; Zhang et al., 2002):

b
D ADX(DBK() = C(t) € R™™, 2)
k=1

where Ai(t) € R™T, Bi(t) € R™™ (withk = 1,2,...,p),
and C(t) € R™™ represent time-varying coefficient matrices. In
addition, Ai(t) € R™™" and By (t) € R™ ™ satisfies the condition of
the unique solution of (2) (Simoncini, 2016). The aim of this work
is to find the unknown time-varying matrix X(t) € R™™ within
finite time by designing the nonlinear recurrent neural networks
such that the above general time-varying LME (2) holds.

2.1. The model

In the literature, Zhang neural network (ZNN) has been pro-
posed to solve various time-varying problems broadly encoun-
tered in scientific and engineering areas (Xiao & Zhang, 2011, 2012;
Zhang et al., 2008; Zhang & Ge, 2005; Zhang et al., 2002). Consid-
ering the advantages of the exponential convergence, the design
method of ZNN is first extended to solve the general time-varying
linear matrix equation (2). The realization can be summarized and
listed in the following procedure (Xiao & Zhang,2011,2012; Zhang
et al., 2008; Zhang & Ge, 2005).

First, an indefinite matrix-valued error function &(t) is defined
based on the formulation of the general time-varying linear matrix
equation (2):

p
(1) =Y ALDX(D)BK(t) — C(t) € ™™, (3)
k=1

of which each element is indefinite. It can be negative, positive,
zero, or even lower-unbounded.

Second, the following evolution formula is adopted for &(t) such
that lim;_, o, &(t) = 0:

de(t)
—ar = rFEm). (4)

where design parameter y > 0 is the scaling factor to adjust
the convergence rate of lim;_, ,,&(t) = 0, and F(-) stands for the
nonlinear activation function array.

At last, expanding the evolution formula (4) by substituting
(3) into (4), we obtain the general framework of the nonlinear
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