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a b s t r a c t

This paper provides new theoretical results on the multistability and instability analysis of recurrent
neural networks with time-varying delays. It is shown that such n-neuronal recurrent neural networks
have exactly (4k + 3)k0 equilibria, (2k + 2)k0 of which are locally exponentially stable and the others
are unstable, where k0 is a nonnegative integer such that k0 ≤ n. By using the combination method of
two different divisions, recurrent neural networks can possess more dynamic properties. This method
improves and extends the existing results in the literature. Finally, one numerical example is provided to
show the superiority and effectiveness of the presented results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, cellular neural networks (CNNs) have attracted much
attention from both academic and industry communities due to
their wide applications in image processing, pattern recognition,
associative memory and their ability to tackle complex problems,
for example Chen and Rong (2003), Chen, Zhang, and Lin (2016),
Chua and Yang (1988), Cohen and Grossberg (1983), Kosko (1988),
Liu, Li, Tong, and Chen (2016c), Liu and Michel (1993), Lu, Wang,
and Chen (2011), Maundy and El-Masry (1990), Thiran, Crounse,
Chua, andHalser (1995),Wang, Shen, Yin, and Zhang (2015),Wang,
Sun, andMazenc (2016),Wen, Zeng, Chen, andHuang (2017),Wen,
Zeng, Huang, Yu, and Xiao (2015) and Yuan and Cao (2005). Recur-
rent neural networks (RNNs) are regarded as another kind of neural
networks, which have more abundant dynamic properties. It is
necessary to further research and study recurrent neural network.

The stability analysis of neural networks for steady-state solu-
tion (equilibria or invariant orbit) is the prerequisite and founda-
tion in practical application, see, e.g., Cao (2001), Chen, Ge,Wu, and
Gong (2015), Chen andWang (2007), Di Marco, Forti, and Pancioni
(2016), Huang, Fan, andMitra (2017), Nie and Zheng (2015a),Wen,
Zeng, Huang, and Zhang (2014), Zeng, Wang, and Liao (2003) and
Zhang and Shen (2015). In an associative memory neural network,
the dynamic evolution process from any initial state to its adjacent
equilibrium points or adjacent periodic orbits can be considered as
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a process of associative memory, which requires multistability or
multiperiodicity to provide theoretical analysis. In other words, in
order to have the effect of associative memory in neural networks,
memory model is designed for equilibrium points or periodic
orbits. In addition, multistability or multiperiodicity is of great
interest in both theory and practice (Cao, Feng, & Wang, 2008; Liu,
Zeng, &Wang, 2016a; Nie, Zheng, & Cao, 2015; Shayer & Campbell,
2000; Zhang, Yi, & Yu, 2008; Zhang & Zeng, 2016).

In recent years, there are still many interesting topics of the
multistability of neural networks and the topics have been widely
discussed (Cheng, Lin, & Shih, 2006; Cheng, Lin, Shih, & Tseng,
2015; Di Marco, Forti, & Pancioni, 2017; Kaslik & Sivasundaram,
2011; Liu, Zeng, &Wang, 2016b; Nie, Cao, & Fei, 2013; Nie & Zheng,
2015b; Nie, Zheng, & Cao, 2016; Wang & Chen, 2012, 2014, 2015;
Zeng & Wang, 2006; Zhang, Yi, Zhang, & Heng, 2009). It should be
noted thatmost existing results are concernedwith the neural net-
works with bounded activation function or bounded time delays.
For instance, in Zeng and Wang (2006), by decomposition of state
space ℜ

n into 3n areas, some conditions were derived to ensure
the existence of the multiperiodicity of CNNs, and to acquire 2n

stable periodic trajectories. Specially, 3n equilibria in the Hopfield-
type neural networks are obtained in Cheng et al. (2006). Besides,
it was shown that convergence and multistability of DM-CNNs
in the general case of nonsymmetric interconnections could be
investigated in Di Marco et al. (2017).

In order to make storage capacity greater, in Bao and Zeng
(2012), the neural networks with discontinuous activation func-
tions were considered, and it was proved that the n-neuronal
dynamical networks can obtain (4k − 1)n locally exponentially
stable equilibrium points. More generally, in Nie et al. (2013), the
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n-neuronal competitive neural networks with exactly (2r + 1)n
equilibria were discussed, (r + 1)n of which were exponentially
stable, where the output function of network belonged to a class of
piecewise linear functions with 2r(r ≥ 1) corner points. Moreover,
based on the geometrical properties of the activation functions
in Gong, Liang, and Zhang (2016), the multistability of complex-
valued neural networks with appropriate real-imaginary-type ac-
tivation functions and distributed delays was addressed. With the
development of multistability, the other relevant works could be
found in Huang, Zhang, and Wang (2012, 2014), Nie and Zheng
(2016) and Wang, Lu, and Chen (2010).

In this paper, by using the combinationmethod of two different
divisions, our aim is to further explore the multistability of recur-
rent neural networks with the piecewise linear activation func-
tion. Different from the previous division of state space, we have
increased the dimensional division of state space. Some sufficient
criteria are obtained to ensure that an n-neuronal recurrent neural
network with (k + 1)-stair activation function can have (4k + 3)k0
equilibrium points and (2k+2)k0 of them are locally exponentially
stable, where k0 is a nonnegative integer such that k0 ≤ n. By
contrast with most of the contributions available in the literature,
the dimensional division of state space can lead to neural networks
more abundant in dynamic behavior, and some conclusions extend
conclusions produced by the division of state space.

Similar activation functions were also presented in Zeng,
Huang, and Zheng (2010) and Zeng and Zheng (2012, 2013). The
traditional division of state space rely heavily on the dimension
of state space. The new way of division(i.e., coupled division) is
presented, which reduces dependency on the dimension of state
space. Note that by using the dimensional reconstruction and
division of state space, the coupled division allows the division of
space to be more diverse, and our conclusions extend the existing
results ofmultistability. As a result, it has beenwell recognized that
the different regions of parameter are given by means of coupling
division and they can be chosen freely, which is helpful to improve
the range of the regions of parameter.

The rest of the paper is organized as follows. Section 2 describes
model and preliminaries which will be used later. In Section 3,
sufficient conditions are derived for the existence, instability and
local stability of the equilibrium points for the recurrent neural
networks with time-varying delays. In Section 4, one example is
provided to demonstrate the effectiveness of the obtained results.
Some concluding remarks are drawn in Section 5.

2. Preliminaries

2.1. Notations

Let C([t0 − τ , t0],D) be the Banach space of functions map-
ping [t0 − τ , t0] into D ⊆ ℜ

n with norm defined ∥φ∥∞ =

max1≤i≤n{supr∈[t0−τ ,t0]|φi(r)|}, where φ(s) = (φ1(s), φ2(s), . . . ,
φn(s))T ∈ C([t0 − τ , t0],D). Denote ∥x∥∞ = max1≤i≤n{|xi|} as
the vector norm of the vector x = (x1, x2, . . . , xn)T ; Card(G) as the
number of elements in the set G; |A| as the absolute-value matrix
of A = [aij], i.e., |A| = [|aij|].

For the given integer k ≥ 1 and the given constant 0 < Es ∈ ℜ,
s = 1, 2, . . . , 2k+1, there exist Z i−

j , Z i+
j ∈ ℜ, j = 1, 2, . . . , 4k+3,

such that ∀i ∈ {1, 2, . . . , n}

Z i−
1 < Z i+

1 < −E2k+1 < Z i−
2 < Z i+

2

< −E2k < · · · < −E1 < Z i−
2k+2 < Z i+

2k+2

< E1 < Z i−
2k+3 < Z i+

2k+3 < E2 < · · · < E2k
< Z i−

4k+2 < Z i+
4k+2 < E2k+1 < Z i−

4k+3 < Z i+
4k+3.

For example, when k = 1 and Es = 3s−2, there exist Z i−
j , Z i+

j ∈

ℜ, j = 1, 2, . . . , 7, such that ∀i ∈ {1, 2, . . . , n}

Z i−
1 < Z i+

1 < −7 < Z i−
2 < Z i+

2 < −4 < Z i−
3

< Z i+
3 < −1 < Z i−

4 < Z i+
4 < 1 < Z i−

5 < Z i+
5

< 4 < Z i−
6 < Z i+

6 < 7 < Z i−
7 < Z i+

7 .

Let

I1 = {i|i = 1, 2, 3, . . . , n}

I2 = {i|i = 1, 2, 3, . . . , 4k + 3}

I3 = {i ∈ I2|i = 2s − 1, s = 1, 2, 3, . . . , 2k + 2}

I4 = {2k + 2}

I5 = {4k + 4}

Di1 = {[Z i−
j , Z i+

j ]|∀j ∈ I3}

Di2 = {[Z i−
2k+2, Z

i+
2k+2]}

Di3 = {[Z i−
j , Z i+

j ]|∀j ∈ I2 − I3 − I4}.

Then, Di1 is composed of (2k + 2) intervals; Di2 is composed
of one interval; Di3 is composed of 2k intervals. Since lij(i) ∈

Di1
⋃

Di2
⋃

Di3 is an one-dimensional interval, we obtain that for
∀j(i) ∈ I2

⋃
I5

n∏
i=1

lij(i) = l1j(1) × l2j(2) × · · · × lnj(n).

It is easy to see that any
∏n

i=1l
i
j(i) is a compact and convex.

2.2. Model

In this paper, we consider a general class of recurrent neural
networks with time-varying delays as follows: ∀i ∈ I1

ẋi(t) = − xi(t) +

n∑
j=1

aijf (xj(t))

+

n∑
j=1

bijf (xj(t − τj(t))) + ui (1)

where x = (x1, x2, . . . , xn)T ∈ ℜ
n is the state vector; A = [aij]

and B = [bij] are connection weight matrices that are not assumed
to be symmetric; u = (u1, u2, . . . , un)T ∈ ℜ

n is an input vector;
for ∀t ≥ t0, ∀j ∈ {1, 2, . . . , n}, τj(t) with respect to τ satisfies
0 ≤ τj(t) ≤ τ = max1≤i≤n{sup{τi(t), t ≥ t0}}. One activation
function with (k + 1)-stair is given by

f (x) =

N∑
s=1

(ms−1 − ms)
2

(|x + Es| − |x − Es|) (2)

where N = 2k + 1, Es = 3s − 2, m0 = 1, ms = 1 +

(−1)s, s = 1, 2, . . . , 2k + 1. In particular, when k = 0 in (2),
f (x) =

1
2 (|x + 1| − |x − 1|) is the common saturated function.

In general, such neural network (1) not only represents the net-
work with delays, but also indicates the network without delays.
Denote RNN (1) with activation function (2) to RNN (1′).
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