
Neural Networks 97 (2018) 11–18

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Neural network robust tracking control with adaptive critic
framework for uncertain nonlinear systems✩

Ding Wang a,b,*, Derong Liu c, Yun Zhang c, Hongyi Li c
a The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
b School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
c School of Automation, Guangdong University of Technology, Guangzhou 510006, China

a r t i c l e i n f o

Article history:
Received 25 February 2017
Received in revised form 18 July 2017
Accepted 4 September 2017
Available online 21 September 2017

Keywords:
Adaptive critic designs
Dynamical uncertainty
Learning systems
Neural networks
Optimal control
Robust tracking control

a b s t r a c t

In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems
using the adaptive critic technique. Themain contribution is that a neural-network-based robust tracking
control scheme is established for nonlinear systems involving matched uncertainties. The augmented
system considering the tracking error and the reference trajectory is formulated and then addressed
under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed.
The approximate control law is derived via solving the Hamilton–Jacobi–Bellman equation related to
the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control
performance is guaranteed theoretically via Lyapunov approach and also verified through simulation
illustration.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of various promising techniques related
to artificial intelligence and computational intelligence, many ef-
forts have been given to the fields of neural networks and learning
systems. Among them, the neural-network-based learning control
design has attained great attention, especially under general un-
certain environment. The robust control problem is traditionally
addressed for dynamical systems with uncertainties. The combi-
nation of optimal feedback control and robust stabilization has
attracted special attention (Lin, 2007). After that, by considering
the idea of adaptive critic designs (Werbos, 1992, 2009), some
learning-oriented robust control approaches were proposed (Bian,
Jiang, & Jiang, 2015; Fan & Yang, 2016; Gao, Jiang, Jiang, & Chai,
2016; Jiang & Jiang, 2014; Sun, Liu, & Ye, 2017; Wang, Liu, Zhang,
& Zhao, 2016; Zhong, He, & Prokhorov, 2013). A common prop-
erty of these results is the introduction of adaptive critic designs,
which is an intelligent optimization method involving the idea
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of reinforcement learning. If we study optimal control problems
based on adaptive critic, we should approximate the solution of
the Hamilton–Jacobi–Bellman (HJB) equation, which is difficult to
address directly. The adaptive optimal control of nonlinear systems
has been studied based on adaptive critic (Dierks & Jagannathan,
2010; Luo, Wu, Huang, & Liu, 2015; Lv, Na, Yang, Wu, & Guo, 2016;
Song, Lewis,Wei, & Zhang, 2016; Vamvoudakis & Lewis, 2010)with
extension to differential game design (Zhao, Zhang, Wang, & Zhu,
2016). As for the dynamical uncertainties, the approximate HJB
based solution can be applied to handle the robust control problem
(Wang et al., 2016; Zhong et al., 2013). Note that all of the above
results are obtained for regulation design.

In system and control fields, it is often of great significance to
track a desired trajectory with specific optimality performance.
In particular, the trajectory tracking control problems have been
studied under the adaptive critic framework (Kamalapurkar, Dinh,
Bhasin, & Dixon, 2015; Modares & Lewis, 2014; Qu, Zhang, Feng,
& Jiang, 2017; Vamvoudakis, Mojoodi, & Ferraz, 2017; Yang, Liu,
Wei, & Wang, 2016; Zhang, Cui, Zhang, & Luo, 2011). The ap-
proximate optimal trajectory tracking problem of nonlinear sys-
tems was addressed in Kamalapurkar et al. (2015), Modares and
Lewis (2014) and Zhang et al. (2011). The guaranteed cost tracking
control method for a class of uncertain nonlinear systems was
provided in Yang et al. (2016). The learning-based decentralized
tracking problem for nonlinear large-scale interconnected systems
was addressed in Qu et al. (2017). A novel event-triggered tra-
jectory tracking controller of nonlinear systems was developed
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in Vamvoudakis et al. (2017). Note that most of these results
are derived for trajectory tracking of normal nonlinear systems
without dynamical uncertainties.

As an important algorithm of reinforcement learning, policy
iteration has been utilized frequently in various adaptive-critic-
based optimization designs. However, there is an obvious diffi-
culty, that is the choice of initial admissible control laws (Jiang
& Jiang, 2014; Vamvoudakis & Lewis, 2010; Wang et al., 2016;
Zhong et al., 2013). Besides, the adaptive-critic-based robust con-
trol approach is often applicable to regulation problem, rather than
trajectory tracking (Fan & Yang, 2016; Jiang & Jiang, 2014;Wang et
al., 2016; Zhong et al., 2013). To overcome these drawbacks, in this
paper, we develop a novel neural-network-based robust tracking
control method for nonlinear systemswithmatched uncertainties,
where the initial stabilizing controller is not needed.

In what follows, the robust tracking control statement and the
augmented system construction are provided in Section 2. Then,
the main design method including the neural network control im-
plementation, the uniform ultimate boundedness (UUB) property,
and the tracking guarantee is analyzed in Section 3. The simulation
verification and the concluding remark are given in Sections 4 and
5, respectively. Besides, we list the main notations used in the
paper. R stands for the set of all real numbers. Rn is the Euclidean
space of all n-dimensional real vectors. Rn×m is the space of all
n × m real matrices. ∥ · ∥ denotes the vector norm of a vector
in Rn or the matrix norm of a matrix in Rn×m. In represents the
n × n identity matrix and 0n×m stands for the n × m zero matrix.
λmax(·) and λmin(·) calculate the maximal andminimal eigenvalues
of a matrix, respectively. diag{a1, a2, . . . , an} denotes the diagonal
matrix composed of a1, a2, . . . , an. Let Ω be a compact subset of
Rn and A (Ω) be the set of admissible control laws on Ω . The
superscript ‘‘T’’ represents the transpose operation and ∇(·) ≜
∂(·)/∂x denotes the gradient operator.

2. Robust tracking control problem statement

In this paper, let us consider a class of continuous-time nonlin-
ear systems described by

ẋ(t) = f (x(t)) + g(x(t))[u(t) + d(x(t))], (1)

where x(t) ∈ Ω ⊂ Rn is the state vector and u(t) ∈ Rm

is the control vector, f (·) and g(·) are known functions and are
differentiable in their arguments with f (0) = 0, and g(x)d(x) is the
unknown perturbationwith d(0) = 0. Here, we let x(0) = x0 be the
initial state and assume that the uncertain term d(x) is bounded by
a known function λd(x), i.e., ∥d(x)∥ ≤ λd(x) with λd(0) = 0.

For the purpose of tracking control, we denote r(t) ∈ Rn as the
desired trajectory possessing the dynamics

ṙ(t) = ϕ(r(t)) (2)

with the initial condition r(0) = r0, where ϕ(r(t)) is a Lipschitz
continuous function satisfyingϕ(0) = 0. Let the trajectory tracking
error be z(t) = x(t) − r(t) with the initial condition z(0) =

z0 = x0 − r0. Considering (1) and (2), we obtain the tracking error
dynamics as

ż(t) = f (z(t) + r(t)) − ϕ(r(t))
+ g(z(t) + r(t))[u(t) + d(z(t) + r(t))]. (3)

Next, we define an augmented state as the form ξ (t) =

[zT(t), rT(t)]T ∈ R2n with the initial condition ξ (0) = ξ0 =

[zT0 , r
T
0 ]

T. The augmented dynamics based on (2) and (3) can be
formulated as

ξ̇ (t) = F (ξ (t)) + G(ξ (t))[u(t) + d(ξ (t))], (4)

where F (·) and G(·) are new system matrices while G(·)d(·) is the
new uncertain term. In detail, they are written as

F (ξ (t)) =

[
f (z(t) + r(t)) − ϕ(r(t))

ϕ(r(t))

]
, (5a)

G(ξ (t)) =

[
g(z(t) + r(t))

0n×m

]
, (5b)

d(ξ (t)) = d(z(t) + r(t)). (5c)

Note that the new uncertain term given above is still upper
bounded since we find that

∥d(ξ )∥ = ∥d(x)∥ ≤ λd(x) = λd(z + r) ≜ λd(ξ ). (6)

For attaining the robust tracking purpose of system (1) to the
reference trajectory (2), we construct the augmented dynamics (4)
with the uncertainty G(ξ )d(ξ ) and aim to find a feedback control
law u(ξ ) to ensure the closed-loop system to be stable. In what
follows, we show that it can be transformed into designing the
optimal controller of its nominal system

ξ̇ (t) = F (ξ (t)) + G(ξ (t))u(t). (7)

We focus on the optimal feedback control design and want to find
the control law u(ξ ) to minimize the cost function

J(ξ (t), u(t)) =

∫
∞

t

{
βλ2

d(ξ (τ )) + U(ξ (τ ), u(τ ))
}
dτ , (8)

where β is a positive constant that will be designed and discussed
later, U(ξ, u) is the basic part of the utility function, U(0, 0) = 0,
and U(ξ, u) ≥ 0 for all ξ and u. Here, the basic utility function
is chosen as the quadratic form U(ξ, u) = ξ TQ̄ ξ + uTRu, where
Q̄ = diag{Q , 0n×n}, Q and R are positive definite matrices with
Q ∈ Rn×n and R ∈ Rm×m. The proposed cost function (8) reflects
the uncertainty, regulation, and control terms simultaneously.

When studying optimal control problems, it is needed the de-
signed feedback controller to be admissible (Vamvoudakis & Lewis,
2010;Wang et al., 2016). For any admissible control law u ∈ A (Ω),
if the associated cost function J(ξ ) is continuously differentiable,
then its infinitesimal version is called the nonlinear Lyapunov
equation

0 = βλ2
d(ξ ) + U(ξ, u(ξ ))

+ (∇J(ξ ))T[F (ξ ) + G(ξ )u(ξ )] (9)

with J(0) = 0. Define the Hamiltonian as the form

H(ξ, u(ξ ), ∇J(ξ )) = βλ2
d(ξ ) + U(ξ, u(ξ ))

+ (∇J(ξ ))T[F (ξ ) + G(ξ )u(ξ )]. (10)

The optimal value of the cost function (8) is

J∗(ξ (t)) = min
u∈A (Ω)

J(ξ (t), u(t)), (11)

which satisfies the HJB equation of the form

0 = min
u∈A (Ω)

H(ξ, u(ξ ), ∇J∗(ξ )). (12)

The optimal feedback control law is derived by

u∗(ξ ) = −
1
2
R−1GT(ξ )∇J∗(ξ ). (13)

Taking the optimal control law (13) into (9), we can rewrite the HJB
equation as

0 = H(ξ, u∗(ξ ), ∇J∗(ξ ))

= βλ2
d(ξ ) + U(ξ, u∗(ξ ))

+ (∇J∗(ξ ))T[F (ξ ) + G(ξ )u∗(ξ )] (14)

with J∗(0) = 0. Next, we will cope with the neural network
based robust tracking control design by using the adaptive critic
framework.
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