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h i g h l i g h t s

• Proposed a novel cost function for counting the samples that are misclassified.
• Conjectured an analytic solution to a constrained p-norm minimization problem.
• Linkage of the proposed formulation to two existing classifiers.
• Provided variance analysis for the proposed analytic solution.
• Extensive experiments with comparison to state-of-the-arts.
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a b s t r a c t

In this article, we introduce an analytic formulation for compressive binary classification. The formulation
seeks to solve the least ℓp-norm of the parameter vector subject to a classification error constraint. An
analytic and stretchable estimation is conjectured where the estimation can be viewed as an extension of
the pseudoinverse with left and right constructions. Our variance analysis indicates that the estimation
based on the left pseudoinverse is unbiased and the estimation based on the right pseudoinverse is
biased. Sparseness can be obtained for the biased estimation under certain mild conditions. The proposed
estimation is investigated numerically using both synthetic and real-world data.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Pattern classification has a wide range of applications spanning
fields in engineering, financial, social, medical and life sciences.
The approaches to classifier design can generally be divided into
those by deterministic means and those by probabilistic means,
even though their underlying mechanisms can be linked theoret-
ically (Duda, Hart, & Stork, 2001; Hastie, Tibshirani, & Friedman,
2001). Under the supervised learning paradigm, the deterministic
approach (also known as non-probabilistic approach) formulates
the classification problem as tominimize themisclassification rate
(or to maximize the classification accuracy) based on a given set
of training samples. The adopted mathematical model for data
learning can be treated as the problem of input–output data map-
ping under the paradigm of neural networks (Faris, Aljarah, &
Mirjalili, 2016; Funahashi, 1989; Hornik, Stinchcombe, & White,
1990; Huang & Du, 1999, 2008; Sprecher, 1993; Zhang, Zhang,
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Lok, & Lyu, 2007), which can be traced to neural and information
decision sciences (Huang & Jiang, 2012; Nickerson, 1972; Proctor
& Cho, 2006).

The probabilistic approach capitalizes on the Bayesian decision
theory which quantifies the tradeoffs among various classification
decisions using probability and the cost that accompany such
decisions (Duda et al., 2001). Depending on the assumptions
regarding the probability density of data and the design model
prior, various methods have been developed to solve the decision
formulation. Themaximum-likelihood estimation views the param-
eters of the data density function as fixed but unknown quantities
where the best estimation of their value is defined to be the one
that maximizes the probability of obtaining the samples actually
observed. The Bayesian estimation views the parameters as random
variables of certain known type of distribution. Such information is
converted to posterior density by the inference of parameter values
from observed data samples. Due to the often limited availability
of data and its limited representativeness for learning, structural
risk minimization adopts an inductive principle for learning model
selection. Generally, themethod adopts amodel of capacity control
and seeks a trade-off between thehypothesis space complexity and
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the quality of fitting the training data. From Vapnik (1998, 1999),
the hypothesis space complexity is known as the VC dimension.
The quality of data fitting is called the empirical error.

Apart from the classification accuracy concern, an important
consideration for classifier design is the computational cost. This
is in view of the often limited computing and memory facilities in
contrast to the large amount of data for processing. Based on the
assumption that the desired signal content is intrinsically sparse,
compressed sensing (also known as sparse estimation) addresses
such concern from reducing the size of estimation parameters
while maintaining competitive accuracy. Grounded on the knowl-
edge that the distance metric plays a critical role in shrinking
the parameters, a typical parametric search is either based on
a relevant distance metric or coupled with constraints that can
produce the desired shrinkage behavior. This can be viewed as
an adoption of a parametric prior with shrinking capability upon
accumulation of evidence from the Bayesian perspective.

In this article, we address the problem of network-based clas-
sifier learning by adopting the deterministic approach. Different
from existing methods, we conjecture an analytic and stretchable
learning solution without needing an iterative search or likeli-
hood maximization steps. Extensive numerical evaluations using
synthetic and real-world data are presented to support the claim.
The main contributions1 include: (i) a novel classification error
counting cost function for constraining the parametric search; (ii) a
novel deterministic method for sparse network parameter estima-
tion. This estimation is the first of its kind whereby classification
network learning and compressed estimation are performed at the
same time; (iii) an analysis of variance regarding the estimation
bias; (iv) a linkage of the proposed formulation to two existing
classifiers; and (v) an extensive numerical evaluation to illustrate
the estimationmechanism and its validity. The conceivable impact
of such estimation is evident from the vast application potentials
in real-world classification problems particularly in this era of big
data.

The organization of this article is as follows: Section 2 provides
the relevant background material for subsequent development. In
particular, learning based on the linear prediction network model
is introduced and this is followed by a brief coverage of parameter
regularization and shrinkage methods in the literature. Next, a
novel error rate based classification cost function is proposed to
pave the development of a classification network with stretchable
parameters in Section 3. This is followed by a variance analysis
in Section 4. In Section 5, a linkage of the proposed methodology
to two well-known state-of-the-art classifiers is shown. A syn-
thetic example is presented in Section 6 to illustrate the stretching
behavior on representative scenarios. Subsequently, in Section 7,
the proposed method is evaluated through experimentation on
benchmark data sets from the literature. Finally, our concluding
remarks are given in Section 8.

2. Preliminaries

2.1. Linear regression

The linear model for regression expresses its output as a linear
combination of the input variables. By denoting an input vector
using x ∈ Rd and a corresponding weight vector using α ∈ Rd,
the linear regression model g(α, x) = xTα can be used to learn a
target output y ∈ R by minimizing the error of fit, e = y − xTα.
In the generalized form (Duda et al., 2001), the input vector x can

1 Someof the preliminary ideas in this paper has beenpresented at the IEEE Tenth
International Conference on Intelligent Sensors, Sensor Networks and Information
Processing (Toh, 2015). The current manuscript extends beyond the preliminary
work in both theoretical findings and experimental observations.

be mapped onto a transformed space p(x) : Rd
↦→ RD where

the model output can be written as g(α, x) = p(x)Tα. This is also
known as a linear network structure. Typically, the transformed
dimension D is chosen to be larger than d such that a larger degree
of freedom for weight vector (correspondingly α ∈ RD) estimation
is obtained. The transformed feature vector p(x) can be considered
as a basis expansion function with popular choice taking the form
of Sigmoid (see e.g., Bishop, 1995; Guliyev & Ismailov, 2016), Gaus-
sian (see e.g., Huang & Du, 2008; Poggio & Girosi, 1990; Rouhani
& Javan, 2016), Polynomial (see e.g., Toh, Tran, & Srinivasan, 2004;
Tong, 2016), and Random Projection (see e.g., Cao, Zhang, Luo, Yin,
& Lai, 2016; Toh, 2008; Widrow, Greenblatt, Kim, & Park, 2013).

Consider a training set consisting of m samples, a popular cost
function for predictor learning is the sum of squared errors (Duda
et al., 2001; Hastie et al., 2001) given by

SSE =

m∑
i=1

e2i =

m∑
i=1

(yi − g(α, xi))2 = (y − Pα)T (y − Pα), (1)

where P = [p(x1), . . . , p(xm)]T ∈ Rm×D packs the transformed
input vectors in matrix form. When P has a full rank, then mini-
mization of (1) gives a solution in analytic form:

α = (PTP)−1PTy. (2)

This solution, which is particularly useful when the system is over-
determined (i.e., m > D), is often referred to as the least squares
error (LSE) solution for regression applications.

2.2. Regularization and restricting the feasible set

There are two common ways to deal with a possible singularity
of the covariancematrix PTP in (2). The first way, called regulariza-
tion, is to constrain the parameter size (i.e., having ∥α∥

2
2 ⩽ t, t ∈

R+ where ∥α∥
2
2 :=

∑D−1
j=0 α2

j = αTα) during minimization. Such
minimization problem is often posed in an unconstrained form
with inclusion of a regularization penalty factor λ ∈ R which
controls the strength of the penalty:

SSEridge(α) =
1
2

m∑
i=1

(
yi − p(xi)Tα

)2
+

λ

2
∥α∥

2
2. (3)

Solving (3) results in an analytic solution given by

α = (PTP + λI)−1PTy. (4)

This solution comes with a scaled identity matrix λI which stabi-
lizes the inverse operation. This minimization is commonly known
as the ridge regression in the literature (Hastie et al., 2001; Hoerl &
Kennard, 1970; Tikhonov, 1963).

In the Least Absolute Shrinkage and Selection Operator (LASSO)
(Tibshirani, 1996, 2011), an ℓ1-norm is adopted as the metric for
constraining the size of parameters, giving

SSElasso(α) =

m∑
i=1

(
yi − p(xi)Tα

)2
+ λ∥α∥1, (5)

where ∥α∥1 :=
∑D−1

j=0 |αj|. By replacing the penalty metric with a
p-norm given by

ℓp : ∥α∥p :=

(
D−1∑
i=0

|αi|
p

)1/p

, (6)

theminimization is called the bridge regression (Frank & Friedman,
1993):

SSEbridge(α) =

m∑
i=1

(
yi − p(xi)Tα

)2
+ λ∥α∥

p
p. (7)
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