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a b s t r a c t

The paper investigates the variable structure control for stabilization of Boolean networks (BNs). The
design of variable structure control consists of two steps: determine a switching condition and determine
a control law. We first provide a method to choose states from the reaching mode. Using this method,
we can guarantee that the number of nodes which should be controlled is minimized. According to the
selected states, we determine the switching condition to guarantee that the time of global stabilization in
the BN is the shortest. A control law is then determined to ensure that all selected states can enter into the
sliding mode, such that any initial state can arrive in the steady-state mode. Some examples are provided
to illustrate the theoretical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Boolean network (BN) is the simplest logical dynamic system
with binary state variables. Kauffman (1969) firstly proposed BNs
as models of complex and nonlinear biological systems in 1969.
The BN has been extensively used in describing, analyzing, and
simulating the cellular networks and gene regulatory networks
(Akutsu, Miyano, & Kuhara, 1999; Davidson, Rast, Oliveri, Ransick,
Calestani, Yuh, Minokawa, Amore, Hinman, Arenas-Mena, et al.,
2002; Huang, Li, Duan, & Starzyk, 2012; Shmulevich, Dougherty,
Kim, & Zhang, 2002; Shmulevich, Dougherty, & Zhang, 2002).
Moreover, it has been a powerful tool in capturing basic dynamic
behavior and providing useful information for many real world
systems. Recently, in Cheng and Qi (2010) and Cheng, Qi, and Li
(2010), a newapproach called the semi-tensor product (STP) ofma-
trices, has been used successfully to express and analyze Boolean
networks (BNs). Please refer to Lu, Li, Liu, and Li (2017) for a survey
of STP. Based on the STP of matrices, it is easy to convert a BN with
logical expression into an algebraic form and many fundamental
results have been derived (Chen, Liang, & Wang, in press; Chen &
Sun, 2013; Cheng, 2011; Cheng & Qi, 2009; Fornasini & Valcher,
2013; Laschov, Margaliot, & Even, 2013; Li & Lu, 2013; Li & Wang,
2015a, b; Li, Wang, & Xie, 2015; Li, Xie, & Wang, 2016; Li, Zhao,
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Weng, & Feng, in press; Liu, Chen, & Wu, 2014; Liu, Li, Lu, & Cao,
in press; Liu, Sun, Lu, & Liang, 2016; Lu, Zhong, Ho, Tang, & Cao,
2016; Lu, Zhong, Huang, & Cao, 2016b; Lu, Zhong, Li, Ho, & Cao,
2015; Lu, Zhong, Tang, Huang, Cao, & Kurths, 2014; Luo, Wang, &
Liu, 2014; Zhong, Lu, Huang, & Ho, 2017; Zhong, Lu, Liu, & Cao,
2014). The stabilization of BCNs is a basic but meaningful issue
in control theory. So it has attracted great attention of system
scientists. Many results about the stabilization of BCNs have been
proposed in Cheng, Qi, Li, and Liu (2011), Li (2016), Liu, Cao, Sun,
and Lu (2016), Li and Wang (2013) and Li, Yang, and Chu (2013,
2014).

Variable structure control is a kind of special nonlinear dis-
continuous control. It was firstly proposed by Emelyanov (1967)
in 1950s. Furthermore, the theory of variable structure control
was developed by Itkis (1976) and Utkin (1977, 1978). Variable
structure control is an effective robust control strategy. Lots of
researchers have been attracted since variable structure control is
robust to uncertain parameters and external disturbances. More-
over, variable structure control can be applied in many practical
systems (Chou & Cheng, 2003; De Battista & Mantz, 2004; Hsu,
Chen, & Li, 2001; Jafarov, Alpaslan Parlakci, & Istefanopulos, 2005;
Kim, Shin, & Chung, 2013). However, the variable structure control
problem for BNs is still open and challenging, and to the best of
our knowledge, there is no result on the construction of variable
structure control for BNs as well.

Motivated by the above discussions, the objective of this paper
is to design the variable structure control for stabilization of BNs.
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When the variable structure control is applied to the BN, the states
response of the system can be separated into three modes in-
cluding reaching, sliding, and steady-state modes. In other words,
we expect that the BN’s trajectory starting from any initial state
converges to the steady-state mode. In this paper, if the state
belongs to the sliding mode, it can arrive in the steady-state mode
in finite time without any control. We just need to design the
variable structure controller to control the states, which belong
to the reaching mode, to enter into the sliding mode. The first
problemwe should solve in this paper is how to choose states from
the reaching mode to guarantee that the number of nodes, which
we should control, isminimized. Under the above precondition,we
further determine the switching condition to ensure that the time
of global stabilization in the BN is the shortest.

It consists of two steps for designing the variable structure
controller of BNs in this paper. The first step is to determine a
switching condition which can guarantee that any initial state can
arrive in the sliding mode. We consider three kinds of steady-
state modes (the steady-state mode is a fixed point, or the steady-
state mode is a state in a limit cycle, or the steady-state mode is
a transient state). For each situation, we separate all states into
three modes named the reaching, sliding, and steady-state modes
respectively. Then we present a method to choose states from
the reaching mode. Using this method, we can guarantee that
the number of nodes, which should be controlled is minimized.
According to the selected states, we then determine the switching
condition to guarantee that the time of the process of the BN global
stabilization is the shortest. The second step is to determine a
control law to guarantee that all selected states in the reaching
mode, can enter into the sliding mode. The method of determining
a control law is motivated by the algorithm in Li (2016). We only
need to get part of the solution, and hence less computational
complexity is required.

The rest is to be organized as the depiction below: Section 2
contains some preliminaries on STP. In Section 3, it consists of two
steps for designing the variable structure controller of BN in this
paper. The first step is to determine a switching condition and
the second step is to determine a control law. Some examples are
provided to illustrate the theoretical results. Conclusions are given
in Section 4.

2. Preliminaries

For simplicity, we first give some notations. We denote
Mm×n as the set of all m × n matrices. The delta set ∆k :={
δik|i = 1, 2, . . . , k

}
, where δik is the ith column of identity matrix

Ik with degree k. A matrix A is called a logical matrix if the columns
set of A, denoted by Col(A), satisfies Col(A) ⊂ ∆m, and let Coli(A)
denote the ith column of matrix A. The set of all m × n logical
matrices is denoted by Lm×n. Assuming A = [δ

i1
m, δ

i2
m, . . . , δ

in
m] ∈

Lm×n, we denote it as A = δm[i1, i2, . . . , in] for simplicity. Let
Ωm = {1, 2, . . . , 2m}. A logical domain D, is defined by D =

{True = 1, False = 0}.

Definition 1 (Cheng et al., 2010). The semi-tensor product of two
matrices A ∈ Mm×n and B ∈ Mp×q is defined as

A ⋉ B = (A ⊗ Iα/n)(B ⊗ Iα/p),

where α = lcm(n, p) is the least common multiple of n and p, and
⊗ is the tensor (or Kronecker) product.

When n = p, STP is just the normal product. In this paper, we
simply call STP ‘‘product’’ and omit the symbol ‘‘⋉’’ if no confusion
raises.

Definition 2 (Cheng et al., 2010). An mn × mn matrix Wm,n is
called a swapmatrix, if it is constructed in the following way: label
its columns by (11, 12, . . . , 1n, . . . ,m1,m2, . . . ,mn) and its rows
by (11, 21, . . . ,m1, . . . , 1n, 2n, . . . ,mn). Then its element in the
position ((I, J), (i, j)) is assigned as

w(I,J),(i,j) = δ
I,J
i,j =

{
1, I = i and = j,
0, otherwise.

Whenm = n, we briefly denoteW[n] = W[m,n]. Furthermore, for
X ∈ Rm and Y ∈ Rn,W[m,n]⋉X⋉Y = Y ⋉X ,W[n,m]⋉Y ⋉X = X⋉Y .

Lemma 3 (Cheng et al., 2010). Let x = x1x2 · · · xn with xi ∈ ∆2,
(i = 1, 2, . . . , n), then x2 = Φnx, whereΦn = δ22n [1, 2n

+2, 2 ·2n
+

3, . . . , (2n
− 2) · 2n

+ 2n
− 1, 22n

].

To use matrix expression we identify each element in D with a
vector as True ∼ δ12 and False ∼ δ22 . Then the Boolean variable takes
value from these two vectors, andD ∼ ∆2. Using STP of matrices, a
logical function with n arguments f : Dn

→ D can be expressed
in the algebraic form as follows:

Lemma4 (Cheng et al., 2010). Any logical function f (x1, . . . , xn)with
logical arguments x1, . . . , xn ∈ ∆2 can be expressed in a multi-linear
form as

f (x1, . . . , xn) = Mf x1x2 · · · xn,

where Mf ∈ L2×2n is unique, and called the structure matrix of f .

3. Main results

3.1. Problem formulation

A BN can be described as follows⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1(t + 1) = f1(x1(t), . . . , xn(t)),
x2(t + 1) = f2(x1(t), . . . , xn(t)),
...

xn(t + 1) = fn(x1(t), . . . , xn(t)),

(1)

where t = 0, 1, 2, . . . is the discrete time, fi : Dn
→ D are logical

functions, and xi ∈ D, i = 1, 2, . . . , n are states of the BN.
In view of the vector expression of logic, let xi(t) ∈ ∆. Then,

using Lemma 4, for each logical function fi, i = 1, 2, . . . , n, we
can find its unique structure matrix Mi. Let x(t) = ⋉n

i=1xi(t). Then
system (1) can be converted into an algebraic form as follows⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1(t + 1) = M1x(t),
x2(t + 1) = M2x(t),
...

xn(t + 1) = Mnx(t).

(2)

Multiplying the equations in (2) together yields

x(t + 1) = Lx(t), (3)

where Coli(L) = ⋉n
j=1Coli(Mj), i = 1, 2, . . . , 2n.

When the variable structure control is applied, the response
of such a system in general consists of three modes, namely, the
reaching mode, sliding mode, and steady-state mode. The states
response of the system can also be separated into the reaching,
sliding, and steady-state modes. For convenience, let the set of all
states, which are separated into the reaching mode, be RM . All
states, which are separated into the sliding mode, belong to the
set SM . Similarly, we denote the set SS by the set of steady-state
mode.
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