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a b s t r a c t

This paper is concerned with the global exponential dissipativity of memristive inertial neural networks
with discrete and distributed time-varying delays. By constructing appropriate Lyapunov–Krasovskii
functionals, some new sufficient conditions ensuring global exponential dissipativity of memristive
inertial neural networks are derived. Moreover, the globally exponential attractive sets and positive
invariant sets are also presented here. In addition, the new proposed results here complement and
extend the earlier publications on conventional ormemristive neural network dynamical systems. Finally,
numerical simulations are given to illustrate the effectiveness of obtained results.
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1. Introduction

During the past decades, various neural networks have been
extensively investigated and successfully applied to associative
memory, pattern recognition, fault diagnosis, automatic control
engineering, robotic, signal processing (Cao, 2003; Chen & Zheng,
2010; Forti, Nistri, & Papini, 2005; Song & Wang, 2008; Xu, Lam,
& Ho, 2006; Yu, Cao, & Wang, 2007; Zhang, Liu, Huang, & Wang,
2010). It has been proved that the membrane of a hair cell can be
realized by equivalent circuits with an inductance in semicircular
canals of certain animals (Angelaki & Correia, 1991; Ashmore &
Attwell, 1985). Scholars also have proved that the charge or flux
q of an electron element with inertial term can be inertial with
the tendency to be unchanged (Wang, Helian, Wu, Lim, Guo, &
Parker, 2010). So, bringing an inertial term into a neural system
provides evident engineering and biological backgrounds. It has
been proved that the dynamical behaviorswould bemore complex
when the inertial item is introduced into neural networks (Babcock
& Westervelt, 1986).

Compared to conventional neural networks with first order
derivative of states, inertial neural networks are second order
derivative of states, and little attention has been given to the
inertial neural networks. Until now, several papers have been
found about inertial neural networks. With the development and
application of inertial neural networks, the studies of such nonlin-
ear system are necessary and meaningful of both theoretical and
potentially practical application.
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In the real world, because the stability of neural networks is a
prerequisite for the applications, considerable attention has been
paid to the research on the problem of stability analysis, e.g., see
Huang, Chan, Huang, and Cao (2007), Jiang and Teng (2004) and
Song, Liang, and Wang (2009). On the other hand, time delays
are frequently encountered in engineering (Jian & Wang, 2015),
biological and economic systems (Zhang, Shen, & Chen, 2014;
Zhang, Zhu, & Chen, 2011). Meanwhile, neural networks often
have a spatial extent because of the presence of an amount of
parallel pathways of varying axon size and lengths. Then, there
may exist either a distribution of conduction velocities along these
pathways or a distribution of propagation delays over a period of
time in some cases, which may cause another type of time delays,
namely, distributed time delays in neural networks. And these
years appearedmanyworks, e.g., see Jian andWang (2015), Li, Lam,
and Cheung (2012), Song andWang (2008) andWang, Liu, and Liu
(2005).

The dissipativity is a generalization of Lyapunov stability, and
the dissipative theory can offer an effective framework for stability
analysis of nonlinear systems (Liao & Wang, 2003). Moreover, it
also builds strong connections among physics, control engineering
and system theory, and it has been applied to norm estimation,
chaos, and robust control, see Song and Zhao (2005), Wang, She,
Zhong, and Cheng (2016) and Wu, Shi, Su, and Chu (2013). There-
fore, it is of both theoretical and practical importance to study
the problem of dissipativity analysis of inertial neural networks
with distributed time delays. Recently, the dissipativity analysis
of inertial neural networks has studied in Muralisankar, Gopalakr-
ishnan, and Balasubramaniam (2012), Qi, Li, and Huang (2015),
Rakkiyappan, Kumari, Chandrasekar, and Krishnasamy (2016);
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Fig. 1. Circuit of memristive inertial neural networks. Rij is the memristor between
the neuron activation function gj(·) and zi(t), R∗

ij is the memristor between the
neuron activation function g∗

j (·) and zi(t), R∗∗

ij is the memristor between the neuron
activation function g∗∗

j (·) and zi(t), Ii(t) is the external input, Li is inductor, zi(t) is
current of the inductor, Ri and Ci are the resistor and capacitor, ui, u∗

i , u
∗∗

i are the
outputs, i, j = 1, 2, . . . , n.

Rakkiyappan, Premalatha, Chandrasekar, and Cao (2016) and Tu,
Cao, Alsaedi, and Alsaadi (2017).

It has been shown thatmemristor devices havemany promising
applications, one of which is to emulate synaptic behavior (Pershin
& Di Ventra, 2010; Wang et al., 2012). And so, of course, we
can replace resistors with memristors in the conventional circuit
implementation of neural network to design a newmodel of neural
networks to emulate the human brain, that is, the memristive
neural networks. Memristive neural networks are a class of state-
dependent nonlinear systems from a systems-theoretic point of
view (Hu & Wang, 2010; Wu, Wang, Niu, & Wang, 2015; Wu,
Wen, & Zeng, 2012; Wu & Zeng, 2014; Yang, Cao, & Yu, 2014;
Zhang, Shen, Yin, & Sun, 2015). Such system family can reveal
jumped, transient chaos of rich and complex nonlinear behaviors
(Abdurahman & Jiang, 2016; Duan & Guo, 2016; Guo,Wang, & Yan,
2013; Guo, Yang, &Wang, 2016; Li & Cao, 2015; Zhang et al., 2014).
In order to allow the memristors to be readily used in emerging
technologies, the stability of such state-dependent nonlinear sys-
tem family should be studied in the first position, as the above
discussion,we know that the dissipative theory provides a nice tool
for analyzing the stability of memristive neural networks.

Recently, the dissipativity analysis of memristive neural net-
work was investigated in Guo et al. (2013) and Tu et al. (2017).
However, on the dissipativity analysis ofmemristive inertial neural
networks or conventional inertial neural networks with discrete
and distributed time-varying delays, few results are found in the
existing literatures. So, it is of great importance to fill this gap.
Motivated by the above discussions and basing on the previous
studies (Hu & Wang, 2010; Rakkiyappan, Kumari et al., 2016; Tu
et al., 2017; Wu et al., 2012; Zhang et al., 2014), in this paper,
we will derive several new criteria ensuring global exponential

dissipativity of memristive inertial neural networks with discrete
and distributed time-varying delays. The main contribution of this
paper lies in the following aspects.

(1) Comparedwith the results on dissipativity of the neural net-
works with continuous right-hand side (Muralisankar et al., 2012;
Qi et al., 2015; Wang et al., 2016; Wu et al., 2013), in this paper,
we adopt nonsmooth analysis and dissipative theory to handle the
global dissipativity of memristive inertial neural networks with
discontinuous right-hand side, and our results of the dissipativity
are more general and achieve a valuable improvement.

(2) The circuit implementation of memristive inertial neural
networks with distributed time-varying delays is given out.

(3) The dissipativity analysis is extended to the memristive
neural networks with inertial term and distributed time-varying
delays, and thememristive inertial neural networks are second or-
der derivative of states, which complement and extend the earlier
publications.

(4) We consider the global dissipativity which is a general-
ization of Lyapunov stability. And the sufficient criteria in our
paper can be directly derived from the parameters of the neural
networks, and are very easily verified.

(5) The proposed method in this paper can be applied to the
general nonlinear hybrid systems.

The organization of this paper is as follows. Model formulation
and some preliminaries are introduced in Section 2. Several new
criteria ensuring global exponential dissipativity of memristive in-
ertial neural networks with discrete and distributed time-varying
delays are derived in Section 3. Numerical simulations are given to
demonstrate the effectiveness of the proposed results in Section 4.
Finally, this paper ends with conclusions.

2. Preliminaries

Throughout this paper, solutions of all systems considered in
the following are in Filippov’s sense (Filippov, 1988). Let N =

{1, 2, . . . , n}, Rn be the space of n-dimensional real column vec-
tors. For any κ = (κ1, κ2, . . . , κn)T ∈ Rn, the norms are de-
fined by ∥κ∥ = (

∑n
i=1|κi|

p)1/p, where p is a positive integer
and p ≥ 1. co[γ ∗, γ ∗∗

] denotes the convex hull of {γ ∗, γ ∗∗
}. Aij

= max{|a∗

ij|, |a
∗∗

ij |},Bij = max{|b∗

ij|, |b
∗∗

ij |}, Cij = max{|c∗

ij |, |c
∗∗

ij |}.di
= max{d∗

i , d
∗∗

i }, di = min{d∗

i , d
∗∗

i }, aij = max{a∗

ij, a
∗∗

ij }, aij
= min{a∗

ij, a
∗∗

ij }, bij = max{b∗

ij, b
∗∗

ij }, bij = min{b∗

ij, b
∗∗

ij }, c ij
= max{c∗

ij , c
∗∗

ij }, c ij = min{c∗

ij , c
∗∗

ij }. Ii = maxt≥0{|Ii(t)|},
µ

i
= (d1 − λ1, d2 − λ2, . . . , dn − λn)T , µi = (d1 − λ1, d2 −

λ2, . . . , dn − λn)T , ν+

i = max{|µ
i
λi − αi|, |µiλi − αi|}. x(t) =

(x1(t), x2(t), . . . , xn(t))T .
In this paper, based on Kirchhoff’s current law and from the

circuit of memristive inertial neural networks as shown in Fig. 1,
the equation of the ith subsystem can be described by the following
equations:

LiCi
d2zi(t)
dt2

= −zi(t) − Li[
n∑

j=1

(
1
Rij

+
1
R∗

ij
+

1
R∗∗

ij
)δij

+
1
Ri

]
dzi(t)
dt

+

n∑
j=1

δij

Rij
gj(Liżj(t)) +

n∑
j=1

δij

R∗

ij

× gj(Liżj(t − τj(t))) +

n∑
j=1

δij

R∗∗

ij

∫ t

t−σj(t)
gj(Liżj(s))ds

+ li(t) t ≥ 0, i ∈ N ,

where δij = 1, if i ̸= j holds, otherwise, −1. Li is inductance, zi(t)
is current of the inductor, Ri and Ci are the resistor and capacitor,
respectively, Rij represents the memristor between the neuron
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