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a b s t r a c t

Clustering data streams is becoming themost efficient way to cluster amassive dataset. This task requires
a process capable of partitioning observations continuously with restrictions of memory and time. In this
paper we present a new algorithm, called G-Stream, for clustering data streams by making one pass over
the data. G-Stream is based on growing neural gas, that allows us to discover clusters of arbitrary shapes
without any assumptions on the number of clusters. By using a reservoir, and applying a fading function,
the quality of clustering is improved. The performance of the proposed algorithm is evaluated on public
datasets.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A data stream is a sequence of potentially infinite, non-
stationary (i.e., the probability distribution of the unknown data
generation process may change over time) data arriving continu-
ously (which requires a single pass through the data) where ran-
dom access to data is not feasible and storing all arriving data is
impractical. The stream model is motivated by emerging appli-
cations involving massive datasets; for example, customer click
streams, financial transactions, search queries, Twitter updates,
telephone records, and observational science data are better
modeled as data streams (Guha, Meyerson, Mishra, Motwani, &
O’Callaghan, 2003). Mining data streams can be defined as the
process of finding a complex structure in these large data. While
clustering is the problem of partitioning a set of observations into
clusters such that observations assigned in the same cluster are
similar (or close) and the inter-cluster observations are dissim-
ilar (or distant), clustering data streams requires, additionally, a
process capable of partitioning observations continuously with
restrictions of memory and time. In the literature, many data
stream clustering algorithms have been adapted from clustering
algorithms, e.g., the partitioning method k-means (Ackermann
et al., 2016), the density-based method DBSCAN (Cao, Ester,
Qian, & Zhou, 2006; Isaksson, Dunham, & Hahsler, 2012), or the
message passing-based method Affinity Propagation (AP) (Zhang,
Furtlehner, & Sebag, 2008). In this work, we provide a one-pass

∗ Corresponding author.
E-mail addresses: Mohammed.Ghesmoune@lipn.univ-paris13.fr

(M. Ghesmoune), Mustapha.Lebbah@lipn.univ-paris13.fr (M. Lebbah),
Hanene.Azzag@lipn.univ-paris13.fr (H. Azzag).

streaming clustering algorithm titled G-Stream (Growing Neural
Gas over Data Streams). We modify Growing Neural Gas (GNG) to
obtain a new algorithm, whose main features and advantages are
described as below:

• The topological structure is represented by a graph wherein
each node represents a cluster, which is a set of ‘‘close’’ data
points andneighboring nodes (clusters) are connected by edges.
The graph size is not fixed but may evolve.

• We use an exponential fading function to reduce the impact
of old data whose relevance diminishes over time. For the
same reason, links between nodes are also weighted by an
exponential function.

• Unlike many other data stream algorithms that start by taking
a significant number of data points for initializing the model
(these data points can be seen several times), G-Stream starts
with only two nodes. Several nodes (clusters) are created
in each iteration, unlike the traditional Growing Neural Gas
algorithm (Fritzke, 1994).

The remainder of this paper is organized as follows: Section 2
is dedicated to related works. Section 3 describes the G-Stream
algorithm. Section 4 reports the experimental evaluation on both
synthetic and real-world datasets. Section 5 concludes this paper.

2. Related Works

This section discusses previousworks on data stream clustering
problems, and highlights the most relevant algorithms proposed
in the literature to deal with this problem. Most of the existing
algorithms (e.g. StreamKM++ (Ackermann et al., 2016), CluStream
(Aggarwal et al., 2003), DenStream (Cao et al., 2006), or ClusTree
(Kranen, Assent, Baldauf, & Seidl, 2011)) divide the clustering
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process in two phases: (a) Online, the data will be summarized;
(b) Offline, the final clusters will be generated. Both CluStream
(Aggarwal et al., 2003) and DenStream (Cao et al., 2006) use a
temporal extension of the Clustering Feature (CF) vector (Zhang,
Ramakrishnan, & Livny, 1996) (called micro-clusters) to maintain
statistical summaries about data locality and timestamps during
the online phase. CluStream uses the concepts of a pyramidal time
frame in conjunction with a micro-clustering approach. The online
phase stores q micro-clusters in (secondary) memory, where q is
an input parameter. Eachmicro-cluster has a maximum boundary,
which is computed as the standard deviation of the mean distance
of the data points to their centroids multiplied by a factor f . Each
new point is assigned to its closest micro-cluster (according to
the Euclidean distance) if the distance between the new point and
the closest centroid falls within the maximum boundary. If so, the
point is absorbed by the cluster and its summary statistics are
updated. If none of the micro-clusters can absorb the point, a new
micro-cluster is created. This is accomplished by either deleting
the oldest micro-cluster or by merging two micro-clusters. The
oldest micro-cluster is deleted if its timestamp is below a given
threshold δ (input parameter). The q micro-clusters are stored
in a secondary storage device in particular time intervals that
decrease exponentially, which are referred as snapshots. These
snapshots allow the user to search for clusters in different time
horizons through a pyramidal time window concept. The use of
the pyramidal pattern provides an effective trade-off between the
storage requirements and the ability to recall summary statistics
from different time horizons. This summary information in the
micro-clusters is used by an offline componentwhich is dependent
upon a wide variety of user inputs such as the time horizon or the
granularity of clustering (Aggarwal et al., 2003).

DenStream (Cao et al., 2006) is a density-based data stream
clustering algorithm that also uses a feature vector based on the
CF vector. By creating two kinds of micro-clusters (potential and
outlier micro-clusters), in its online phase, DenStream overcomes
one of the drawbacks of CluStream, its sensitivity to noise.
Each potential-micro-cluster structure has an associated weight
w that indicates its importance based on temporality (micro-
clusters with no recent points tend to lose importance, i.e. their
respective weights continuously decrease over time in outdated-
micro-clusters). When a new data point arrives, the algorithm tries
to insert it into its nearest potential-micro-cluster based on its
updated radius. If the insertion is not successful, the algorithm
tries to insert the data point into its closest outlier micro-cluster.
If the insertion is successful, the cluster summary statistics will
be updated accordingly. Otherwise, a new outlier micro-cluster
is created to absorb this point. However, the non-release of
the allocated memory when either deleting a micro-cluster or
merging two old micro-clusters is considered as a limitation of
the DenStream algorithm as well as the time-consuming pruning
phase for removing outliers (Amini, Teh, & Saboohi, 2014). In the
offline phase, themicro-clusters found during the online phase are
considered as pseudo-points and will be passed to a variant of k-
means in the CluStream algorithm (resp. to a variant of DBSCAN in
the DenStream algorithm) in order to determine the final clusters.

StreamKM++ (Ackermann et al., 2016) maintains a small outline
of the input data using the merge-and-reduce technique. The
merge step is performed by a means of data structure, named
the bucket set, which is a set of L buckets (also named buffers),
where L is an input parameter. The reduce step is performed by
a significantly different summary data structure, the coreset tree,
when we consider that it reduces 2m points to m points. When a
new data point arrives, it is stored in the first bucket. If the first
bucket is full, all of its data are moved to the second bucket. If the
second bucket is full, the two buckets are merged resulting in 2m
points, which is then reduced tom points, by the construction of a

coreset tree, stored in the third bucket. In its offline phase, a variant
of k-means, called k-means++ (Arthur & Vassilvitskii, 2007), is used
for finding the final clusters.

ClusTree (Kranen et al., 2011) is an anytime algorithm that
organizes micro-clusters in a tree structure for faster access and
automatically adapts micro-cluster sizes based on the variance of
the assigned data points. Any clustering algorithm, e.g. k-means or
DBSCAN, can be used in its offline phase. All algorithms based on
the k-means approach (e.g. StreamKM++ (Ackermann et al., 2016),
CluStream (Aggarwal et al., 2003), or ClusTree (Kranen et al., 2011))
inherit the drawbacks of the latter,which are the non-ability to find
clusters of arbitrary shapes (only spherical clusters may be found);
and the need to know in advance the number of clusters.

SOStream (Isaksson et al., 2012) is a density-based clustering
algorithm inspired by both the principle of the DBSCAN algorithm
and self-organizing maps (SOM) (Kohonen, Schroeder, & Huang,
2001), in the sense that a winner influences its immediate
neighborhood. When a new point arrives, the nearest cluster
is selected, based on the Euclidean distance to existing micro-
clusters, and then absorbs this point if the calculated distance
is less than a dynamically defined threshold. It also assigns the
micro-clusters’ neighbors to the nearest cluster. If the new point is
not absorbed by any micro-cluster, a new micro-cluster is created
for it. In the SOStream algorithm, merging, updating and adapting
dynamically the threshold value for each cluster are performed in
an online manner. However, no split feature is proposed in the
algorithm. SOStream also uses an exponential fading function to
reduce the impact of old data whose relevance diminishes over
time.

E-Stream (Udommanetanakit, Rakthanmanon, & Waiyamai,
2007) classifies the evolution of data into five categories:
appearance, disappearance, self evolution, merge, and split. It uses
another data structure for saving summary statistics, named the
α-bin histogram. E-Stream starts empty, and every new point
either is mapped into one of the existing clusters (based on
a radius threshold) or a new cluster is created around it. Any
cluster not meeting a predefined density level is considered
inactive and remains isolated until achieving a desired weight. The
algorithm employs an exponential decay function to weigh down
the influence of older data, thus focusing on keeping an up-to-date
view of the data distribution. Clusters which are not active for a
certain time period may be deleted from the data space.

StrAP (Zhang et al., 2008), an extension of the Affinity
Propagation (AP) algorithm (Frey & Dueck, 2007) for data stream,
uses a reservoir for saving potential outliers. At first, the stream
model (the first prototypes) is initialized by using theAP algorithm.
The distance between the new data point and the nearest
prototype is calculated and the decision whether this point is
considered as an outlier or added to the stream model is made. A
statistical test is employed for change point detection. The stream
model is rebuilt if triggered by the change detection test or if the
number of outliers exceeds the reservoir size. In SVStream (Wang,
Lai, Huang, & Zheng, 2013), the data elements of a stream are
mapped into a kernel space, and the support vectors are used as
the summary information of the historical elements to construct
cluster boundaries of arbitrary shape. SVStream is based on support
vector clustering (SVC) and support vector domain description
(SVDD). The curious reader can refer to Amini et al. (2014) and
de Andrade Silva et al. (2013) for more details on data stream
clustering algorithms.

A number of authors have proposed variations on the Growing
Neural Gas (GNG) approach (this network is described in more
detail in Section 3.1). The GNG algorithm creates a new node every
λ iterations (λ is fixed by the user as an input parameter). Hence,
it is not adapted for data streams, or non-stationary datasets, or to
novelty detection. In order to deal with non-stationary datasets,
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