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a b s t r a c t

Training feedforward neural networks (FNNs) is one of the most critical issues in FNNs studies. However,
most FNNs training methods cannot be directly applied for very large datasets because they have high
computational and space complexity. In order to tackle this problem, the CCMEB (Center-Constrained
Minimum Enclosing Ball) problem in hidden feature space of FNN is discussed and a novel learning
algorithm called HFSR-GCVM (hidden-feature-space regression using generalized core vector machine)
is developed accordingly. In HFSR-GCVM, a novel learning criterion using L2-norm penalty-based
ε-insensitive function is formulated and the parameters in the hidden nodes are generated randomly
independent of the training sets. Moreover, the learning of parameters in its output layer is proved
equivalent to a special CCMEBproblem in FNNhidden feature space. Asmost CCMEB approximation based
machine learning algorithms, the proposed HFSR-GCVM training algorithm has the following merits: The
maximal training time of the HFSR-GCVM training is linear with the size of training datasets and the
maximal space consumption is independent of the size of training datasets. The experiments on regression
tasks confirm the above conclusions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Neural networks have strong ability to approximate complex
nonlinear functions from the input samples and can provide ac-
curate models for a large class of natural and artificial phenom-
ena. Out of many kinds of neural networks, feedforward neural
networks (FNNs) play an important role in practical applications.
The standard backpropagation (BP) algorithm (Rumelhart, Hinton,
&Williams, 1986) is a typical method for training FNNs. It is based
on the gradient descent algorithmwell known in optimization the-
ory. However, it is not suitable for large-scale problems since it
has a poor convergence rate and depends on user-specified pa-
rameters. In order to eliminate these disadvantages, several meth-
ods, including conjugate gradient methods (Charalambous, 1992;
Möller, 1990), Levenberg–Marquardt (LM) methods (Ampazis &
Perantonis, 2002;Hagan&Menhaj, 1994;Moré, 1978) and extreme
learningmachine (ELM) (Huang & Chen, 2007; Huang, Zhu, & Siew,
2006) have been developed and fully investigated. From these
studies, it is evident that these methods are effective in medium
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to large scale problem since they can train the same network from
10 to 100 times faster than the standard BP.

Recently, hidden-feature-space ridge regression (HFSR) has
been proposed for training FNNs. It integrated the idea of
ridge regression with hidden-feature-space learning. According to
theoretical and experimental studies in Wang, Chung, and Wang
(2015), HFSR has demonstrated the following characteristics:
(1) The parameters of hidden layer can be generated randomly and
theweights connecting hidden layer and output layer can be solved
analytically. (2) Compared with the BP based training algorithms,
HFSR has shown excellent performance in training time, especially
for small and middle size of datasets, which is usually faster than
that of BP with tens of times. However, HFSR also confronts some
challenges except for its distinctive characteristics. One challenge
is that the space complexity is too high for large-scale applications
or the network model with large number of hidden nodes due to
the necessity of solving the inverse of the matrix in the matrix
equation, which makes HFSR infeasible on personal computers
with limited memory in these situations. On the other hand,
the computational complexity of matrix inversion is between
quadratic and cubic with respect to the training size and this still
requires plenty of training time for large-scale problems, even
though it is much faster than many other traditional methods.
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During the past decade, a variety of learning approaches for
very large datasets have been proposed in the context of kernel
methods. By applying the criterion of maximizing the separat-
ing margins of two different classes, the learning problem can be
formulated as a quadratic programming (QP in abbreviation) prob-
lem which has the important computational advantage of not suf-
fering from the problem of local minima. However, given training
N patterns, a naive implementation of the QP solver takes O(N3)
training time. In order to scale up QP and find QP solutions on very
large datasets effectively,manymethods have beenproposed in re-
cent years (Achlioptas, McSherry, & Schölkopf, 2002; Chu, Ong, &
Keerthi, 2005; Fine & Scheinberg, 2001; Smola & Schölkopf, 2000;
Tsang, Kwok, & Cheung, 2005; Tsang, Kwok, & Zurada, 2006;Wang,
Wang, & Chung, 2014; Williams & Seeger, 2001). These methods
included the Nystrom method (Williams & Seeger, 2001), greedy
approximation (Smola & Schölkopf, 2000), sampling (Achlioptas
et al., 2002; Wang et al., 2014), matrix decompositions (Fine &
Scheinberg, 2001) and so on. Among these works, the generalized
core vector machine (GCVM) proposed by Tsang et al. (2005, 2006)
achieves an asymptotic time complexity that is linear in N and a
space complexity that is independent of N by utilizing an approx-
imation algorithm for the CCMEB (Center-Constrained Minimum
Enclosing Ball) problem in computational geometry. Experiments
on very large datasets for both classification and regression tasks
demonstrated that GCVM is as accurate as existing kernel methods
implementations, but is much faster and can handle much larger
datasets than existing scale-up methods.

In order to solve the learning problems for FNNs on very large
datasets, in this work, the connection between FNN training and
GCVM is built. A novel learning algorithm called HFSR-GCVM
(hidden-feature-space regression using generalized core vector
machine) is developed, in which a novel learning criterion using
L2-norm penalty-based ε-insensitive function is formulated. In
HFSR-GCVM, the merits of GCVM are integrated to solve the QP
problem on very large datasets. Generally speaking, the following
contributions have been made in this paper:

(1) Existing learningmethods for FNNs such as ELMandHFSRwere
originally developed based on the learning criterion of least
square error (Wang et al., 2015). Differentiated from existing
works, this work manages to extend the learning criterion of
FNNs to a novel learning criterion, in which the flatness of
the objective function and the training error are minimized
simultaneously.

(2) A novel function approximation algorithm HFSR-GCVM is
proposed based on CCMEB approximation. In HFSR-GCVM, the
input weights and the hidden layer biases can be randomly
assigned and a wide type of feature mappings can be utilized.
This is quite different from Tsang’s GCVM, in which the
kernel parameters should be determined by cross validation
and rigorous Mercer condition for kernel functions should be
required.

(3) GCVM was originally developed for kernel methods on large
datasets. This work manages to extend GCVM to FNNs training
on very large datasets. It is shown that a wide type of feature
mappings (hidden-layer output functions), including random
hidden nodes and kernels, can be utilized. With this extension,
the GCVM solution can be obtained for FNNs, RBF network and
kernel methods.

2. Feedforward neural networks overview

Fig. 1 shows the structure of FNNs, which includes input layer,
hidden layers and output layer. Like traditional FNNs, all the nodes
in FNNs are connected to the nodes in the adjacent layers through
unidirectional branches and the connection between nodes within

Fig. 1. Structure of FNNs.

one layer is not allowed. The input layer serves to transmit input
signal to the first hidden layer and the output nodes in the output
layer construct the response vector of FNN. Each node in hidden
layers is combined with a linear combiner and an activation
function, whose output is the response of the nodes. Notice that in
FNNs, the activation function can take any infinite differentiability
functions such as sigmoidal functions, decaying RBF functions,
Mexican Hat wavelet function, Morlet wavelet function and fuzzy
basis functions.

Let x(0)
= [x(0)

1 x(0)
2 , . . . , x(0)

d ]
T be the input data and p be the

number of hidden layer. The output in (l + 1)th hidden layer can
be calculated as

x(l+1)
= gl(W(l)x(l)

+ b(l)), l = 0, 1, . . . , p

and the output of the network can be calculated as

y(o)
= W(p)x(p)

+ b(p)

where W(l), l = 1, 2, . . . , is a weight matrix connecting the lth
hidden layer and (l+1)th hidden layer, b(l) is the bias vector of the
lth hidden layer and gl(·) is the activation function of the lth hidden
layer. In order to train FNNs, an efficient learning mechanism is
needed to adjust all the weights of the connections. Based on
the structure in Fig. 1, there are three main approaches in the
training of FNNs. (1) gradient-descent based (e.g. backpropagation
(BP) method for multi-layer FNNs Rumelhart et al., 1986);
(2) least square error based (e.g. extreme learningmachines (ELMs)
Huang, Zhu, & Siew, 2006 for the single-hidden-layer feedforward
networks (SLFNs), hidden-feature-space ridge regression for the
multiple-hidden layer feedforward networks (HFSR)) (Wang et al.,
2015); (3) standard optimization method based (e.g. support
vector machines (SVMs) Cortes & Vapnik, 1995 for the so-called
support vector network).

Among these works, one representative approach is hidden-
feature-space ridge regression HFSR, which originated from
the classical ridge regression (Wang et al., 2015). In HFSR,
for arbitrary sample x in D, an L-dimensional hidden fea-
ture space can be constructed from all the d-dimensional in-
put samples in D by presetting L infinitely differential functions
g(x, θ1), g(x, θ2), . . . , g(x, θL) as the correspondingmapping func-
tions, which can be implemented by the activation functions in
the hidden layer of FNNs. The space generated by the activation
functions of the hidden layer constructs the hidden feature space
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