
Neural Networks 78 (2016) 75–87

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2016 Special Issue

Smart sampling and incremental function learning for very large high
dimensional data
Diego G. Loyola R ∗, Mattia Pedergnana, Sebastián Gimeno García
German Aerospace Center (DLR), Oberpfaffenhofen, 82234 Wessling, Germany

a r t i c l e i n f o

Article history:
Available online 28 September 2015

Keywords:
High dimensional function approximation
Sampling discrepancy
Design of experiments
Probably approximately correct
computation

Function learning
Neural networks

a b s t r a c t

Very large high dimensional data are common nowadays and they impose new challenges to data-driven
and data-intensive algorithms. Computational Intelligence techniques have the potential to provide
powerful tools for addressing these challenges, but the current literature focuses mainly on handling
scalability issues related to data volume in terms of sample size for classification tasks.

This work presents a systematic and comprehensive approach for optimally handling regression tasks
with very large high dimensional data. The proposed approach is based on smart sampling techniques for
minimizing the number of samples to be generated by using an iterative approach that creates new sam-
ple sets until the input and output space of the function to be approximated are optimally covered. Incre-
mental function learning takes place in each sampling iteration, the new samples are used to fine tune the
regression results of the function learning algorithm. The accuracy and confidence levels of the resulting
approximation function are assessed using the probably approximately correct computation framework.

The smart sampling and incremental function learning techniques can be easily used in practical appli-
cations and scale well in the case of extremely large data. The feasibility and good results of the proposed
techniques are demonstrated using benchmark functions as well as functions from real-world problems.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Computer-based simulations of tremendously complex math-
ematical systems describing multifaceted physical, chemical, dy-
namical and engineering models are usually associated with
very expensive costs in terms of processing time and storage.
Complex mathematical models are present in a wide variety of
scientific areas such as the simulation of atmospheric processes
in numerical weather prediction (Han & Pan, 2011; Hsieh & Tang,
1998; Lynch, 2006;Morcrette, 1991), climatemodeling (Flato et al.,
2013), (Gordon et al., 2000), chemical transport (Grell et al., 2005),
(Menut et al., 2013), radiative transfer (Gimeno García, Trautmann,
& Venema, 2012) and large eddy simulations (Sagaut, 2006). Other
scientific disciplines such as genetics, aerodynamics, or statisti-
cal mechanics also make use of highly complex models. The input
space of thesemodels can be of high dimensionalitywith hundreds
or more components. The usage of more realistic models usually
introduces new dimensions leading to an exponential increase in
volume, i.e. ‘‘Big Data’’ (Hilbert & López, 2011; Lynch, 2008).

∗ Corresponding author. Tel.: +49 8153 28 1367; fax: +49 8153 28 1446.
E-mail address: Diego.Loyola@dlr.de (D.G. Loyola R).

The speeding-up of such models is a crucial problem in prac-
tical applications like weather forecasting, remote sensing, and
climate modeling among others. These complex models can be
approximated using for example neural networks (Haupt, Pasini, &
Marzban, 2009; Loyola, 2006; Qazi & Linshu, 2006), support vector
machines (Tripathi, Srinivas, & Nanjundiah, 2006), kernel smooth-
ing models (Cervellera & Macciò, 2013), and the resulting com-
putational intelligence systems are being deployed in operational
environments, see for example Krasnopolsky and Chevallier (2003)
and Loyola (2006).

Related work found in the literature usually addresses function
approximations from complexmathematicalmodels in the general
framework of statistical machine learningwhere it is assumed that
the training samples are created independently according to an
unknown probability density function (Krasnopolsky & Schiller,
2007). However, having a mathematical model to parameterize,
we can freely choose the sample points that better characterize
the input and output spaces of the model. The selection of samples
to be used in function approximation problems is less explored in
the literature, sometimes it is called design of experiments (Sacks,
Welch, Mitchell, & Wynn, 1989) or active learning (Enăchescu,
2013).

In this study we develop a general function approximation
framework in which the choice of the samples describing the

http://dx.doi.org/10.1016/j.neunet.2015.09.001
0893-6080/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

http://dx.doi.org/10.1016/j.neunet.2015.09.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2015.09.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Diego.Loyola@dlr.de
http://dx.doi.org/10.1016/j.neunet.2015.09.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


76 D.G. Loyola R et al. / Neural Networks 78 (2016) 75–87

function is an integral part of the learning problem. The goal is to
find a regression model that accurately approximates a function
f : X → Y with input X ⊂ Rn and output Y ⊂ Rm from a
set of training samples T = {xi, yi} for i = 1 to s, subject to the
constraint of minimizing the number of calls to the target function
f , i.e. minimizing the number of samples s. The dimensionality
of the data needed to solve this problem is characterized by
the number of samples s and the dimensionality of the mapping
represented by f with n inputs and m outputs.

On one side, the complexity of a function does not necessarily
increase for a high dimensional input space; moreover the limiting
factor for an accurate function approximation is the intrinsic
complexity of the target function and not the dimension of the
input data space (Kolmogorov, 1957). Accuracy of approximation
can be achieved in high dimensional cases for target functionswith
lower complexity (Gnecco, Kůrková, & Sanguineti, 2011). On the
other side, systematically sampling the input space with k values
per dimension will require in total s = kn calls to f , therefore the
number of samples s for mappings with high dimensional input
size grows exponentially with the input dimension n.

These difficulties are usually referred as ‘‘the curse of dimen-
sionality’’ problem (Vapnik, 2006) and it has severe consequences
not only for the time needed to create the training dataset but also
for the algorithms needed to solve function approximation prob-
lems that must deal with very large number of samples of high di-
mensionality, i.e. ‘‘Big Data’’.

The data volume component of Big Data is a hot topic in ma-
chine learning, see for example Jin andHammer (2014) andO’Leary
(2013) and the references therein. But the main focus on the cur-
rent literature is the sample size and not the sample dimension
problem. Only a few studies address the big dimension problem
such as for example theoretical investigations of computational
models efficiency in high dimensional context (Kainen, Kůrková,
& Sanguineti, 2012) and for classification tasks wherein the explo-
sion of features brings about new challenges to computational in-
telligence (Yiteng, Yew-Soon, & Tsang, 2014).

In this article we focus on the under-explored topic of big di-
mensionality for regression tasks. The paper is organized as fol-
lows: Section 2 gives an overview of data sampling methods and
discrepancymeasurements. Section 3 shows a comparison of sam-
plingmethods and evaluates their performance for high dimension
input problems. Section 4 presents the smart sampling and incre-
mental function learning (SSIFL) algorithm that optimally solves
this kind of function approximation problems and Section 5 shows
the results of applying SSIFL to a number of benchmark and real-
world functions. Finally, the conclusions are given in Section 6.

2. Data sampling methods

Generally speaking a good sampling method should create
training data that accurately represents the underlying function
preserving the statistical characteristics of the complete dataset.
This section presents first a survey of samplingmethods grouped in
four categories that can be applied to generating high dimensional
sample data.

2.1. Stochastic methods

Pseudo-Random number generators (PR) (Marsaglia & Tsang,
2000;Matsumoto&Nishimura, 1998) are commonly used to create
samples in a given range. PR methods are fast and simple to use,
but they are not distributed uniformly enough especially for the
cases of low number of sampling points and/or large number of
dimensions. PR sampling is sometimes called ‘‘pure’’ or ‘‘plain’’
Monte Carlo (Swiler, Slepoy, & Giunta, 2006).

2.2. Deterministic methods

Uniform populations can be created using quasi-random or
sub-random sequences that cover the input space quickly and
evenly, the uniformity and coverage improves continually as more
data points are added to the sequence. Deterministic methods can
be divided into two subcategories (Kazimipour, Li, & Qin, 2013)
described in the next subsections.

2.2.1. Low discrepancy methods
Low Discrepancy methods have the support of theoreti-

cal upper-bounds on discrepancy. Halton, Sobol, Niederreiter,
Hammersley, and Faure are well known sequences from this
category.

In this work we use Halton sequences, shortened as (HA),
which are constructed according to a deterministic algorithm
that uses prime numbers as bases for each dimension (Halton,
1960). Halton sequences work well in low dimensionality, but
they lose uniformity in high dimensions. Workaround solutions
such as using big prime numbers, setting leap values, scrambling
and shuffling improve the sampling uniformity in such cases.
The HA method is computationally efficient even for very high
dimensional spaces.

2.2.2. Experimental design methods
Experimental Design methods are commonly used for initializ-

ing the population of evolutionary algorithms in order to accelerate
convergence speed and improve stability. The most representative
methods in this category are:

• Uniform Design: a space-filling method based on prime
numbers that generates points uniformly scattered on the input
domain (Peng, Wang, Dai, & Cao, 2012).

• Orthogonal Design: based on Latin squares for creating
orthogonal arrays (Leung &Wang, 2001).

2.3. Geometrical methods

2.3.1. Uniform grid
Uniformgrid (UG) is the simplest samplingmethod inwhich the

samples are created using node points at fixed intervals uniformly
distributed for every dimension. UG is commonly used for creating
look-up tables to accelerate complexmodel computations (Perkins
et al., 2012; Richter, Heege, Kiselev, & Schläpfer, 2014).

Using a uniform grid is convenient for storing the look-up tables
in multi-dimensional arrays. As we will show in Sections 3.2 and
3.3, the coverage of the input space using UG is very poor for low
number of sampling points and high dimensions.

2.3.2. Latin hypercube
Latin hypercube sampling (McKay, Beckman, & Conover, 1979)

partitions the input space into bins of equal probability and dis-
tributes the samples in such a way that only one sample is lo-
cated in each axis-aligned hyperplane. This method and variations
like nearly-orthogonal Latin hypercube (Cioppa, 2002) and Dis-
tributedHypercube and ImprovedHypercube sampling (Beachkof-
ski &Grandhi, 2002) are very popular in computermodel problems.
A Particle Swarm Optimization algorithm for solving large-scale
Latin hypercube design problems was proposed recently (Aziza &
Tayarani-N., 2014).

Latin hypercube sampling is useful when the underlying
function has a low order distribution but this method produces
clustering of sampling points at high dimensions.



Download English Version:

https://daneshyari.com/en/article/6863215

Download Persian Version:

https://daneshyari.com/article/6863215

Daneshyari.com

https://daneshyari.com/en/article/6863215
https://daneshyari.com/article/6863215
https://daneshyari.com

