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h i g h l i g h t s

• The recursive least square algorithm is employed for the big data learning of a neural network.
• Some important characteristics of the least square algorithm are analyzed as are the stability and local minimum avoidance.
• The proposed approach is utilized for the modeling of the crude oil blending process.
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a b s t r a c t

In this paper, the recursive least square algorithm is designed for the big data learning of a feedforward
neural network. The proposed method as the combination of the recursive least square and feedforward
neural network obtains four advantages over the alone algorithms: it requires less number of regressors,
it is fast, it has the learning ability, and it is more compact. Stability, convergence, boundedness of
parameters, and local minimum avoidance of the proposed technique are guaranteed. The introduced
strategy is applied for the modeling of the crude oil blending process.
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1. Introduction

In recent years, the recursive least square algorithm has
been highly utilized in the big data learning, evolving intelligent
systems, and stable intelligent systems.

Big data learning is the learning ability to solve real-world big
data problems; some interestingworks of this topic arementioned
in Kangin, Angelov, Iglesias, and Sanchis (2015), Kasabov (2014),
Luitel and Venayagamoorthy (2014), Mackin, Roy, and Wallenius
(2011), Molina, Venayagamoorthy, Liang, and Harley (2013), Roy
(2015a), Roy, Mackin, and Mukhopadhyay (2013), Roy (2015b),
Schliebs and Kasabov (2013), Xu et al. (2014), and Yuen, King, and
Leung (2015). Evolving intelligent systems are learning methods
whose structure is flexible to adapt to the environment; some
interesting investigations of this issue are detailed in Ballini and
Yager (2014), Bouchachia (2014), Bouchachia and Vanaret (2014),
Leite, Costa, and Gomide (2013), Lughofer and Sayed-Mouchaweh
(2015), Maciel, Gomide, and Ballini (2014), Ordoñez, Iglesias, de
Toledo, and Ledezma (2013), Pratama, Anavatti, Er, and Lughofer
(2015), Pratama, Anavatti, and Lu (2015), and Toubakh and Sayed-
Mouchaweh (2016). The recursive least square algorithm forms
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a linear combination of regressors which are nonlinear functions
of input variables; usually, a large number of regressors must be
employed so as to sufficiently cover the space of plant dynamics,
it is a problem because the regression matrix would become ill-
conditioned due to strong correlation among regressors.

The backpropagation algorithm, also known as the gradient,
considered in Luitel and Venayagamoorthy (2014), Molina et al.
(2013), Ortega-Zamorano, Jerez, Urda Muñoz, Luque-Baena, and
Franco (2015), Xu et al. (2014), and Yuen et al. (2015) is often
utilized for the learning of a feedforward neural network, it has the
problem of slow convergence because it uses a constant scalar gain
as its learning speed.

In this research, the recursive least square algorithm is
employed for the big data learning of a feedforward neural
network. The combination of the recursive least square algorithm
with the feedforward neural network has four advantages as a
solution of the two aforementioned problems: (1) the proposed
algorithm avoids the regression matrix problem because it only
requires the number of regressors utilized by the neural network,
(2) the introduced method is faster than the backpropagation
because the first uses a time-varying matrix gain as its learning
speed, while the second utilizes a constant scalar gain, (3) the
proposed combination has the learning ability due to the neural
network, (4) the suggested strategy is more compact than the
feedforward neural network because the first uses a vector in the
hidden layer, while the second utilizes a matrix.
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Moreover, the stable intelligent systems are characterized to
be systems where the stability is guaranteed and the parameters
are bounded; some interesting works of this theme are included
in Ahn (2012), Ahn and Lim (2013), Cheng Lv, Yi, and Li (2015), Li
and Rakkiyappan (2013), Lughofer (2011), Orozco-Tupacyupanqui,
Nakano-Miyatake, and Perez-Meana (2015), Rakkiyappan, Chan-
drasekar, Lakshmanan, and Park (2014), Rakkiyappan, Zhu, and
Chandrasekar (2014), Rubio, Angelov, and Pacheco (2011), Zhang,
Zhu, and Zheng (2015), and Zhang, Zhu, and Zheng (2016). The sta-
bility of the recursive least square algorithm should be analyzed to
avoid the unboundedness of some parameters known as the over-
fitting.

The backpropagationwith variable learning steps,mentioned in
Cheng Lv et al. (2015), Li and Rakkiyappan (2013), Lughofer (2011),
Orozco-Tupacyupanqui et al. (2015), and Rubio et al. (2011) also
is utilized for the learning of a feedforward neural network; even
it is an efficient algorithm, it would be interesting to modify this
algorithm to improve its performance by the changing of the time-
varying scalar gain as its learning speed.

In this study, the stability of the recursive least square algorithm
for the big data learning of a feedforward neural network is
analyzed, the proposed stable algorithm has two advantages as
a solution of the two above mentioned characteristics: (1) the
introduced strategy avoids the overfitting because the stability,
convergence, boundedness of parameters, and local minimum
avoidance are guaranteed, (2) the suggested algorithm is faster
than the backpropagation with variable learning steps because the
first uses a time-varying matrix gain as its learning speed, while
the second utilizes a time-varying scalar gain.

The paper is organized as follows. In Section 2, the feedforward
neural network is presented. In Section 3, the feedforward
neural network is linearized. In Section 4, the recursive least
square algorithm of a feedforward neural network is designed. In
Section 5, the stability, convergence, boundedness parameters, and
local minimum avoidance of the before mentioned algorithm are
assured. In Section 6, the proposed technique is summarized. In
Section 7, the suggested method is applied for the modeling of
the crude oil blending process. Section 8 presents conclusions and
suggests future research directions.

2. Feedforward neural network

Consider the following unknown discrete-time nonlinear
system:
y(k) = f [x(k)] (1)
where x(k) = [x1(k), . . . , xi(k), . . . , xN(k)]T = [y(k − 1), . . . ,
y(k − n), u (k − 1) , . . . , u (k − m)]T ∈ ℜ

N×1 (N = n + m) is the
input vector, u(k − 1) ∈ ℜ is the process input, y(k) ∈ ℜ is the
process output, and f is an unknown nonlinear function, f ∈ C∞.
The output of the feedforward neural network with one hidden
layer can be expressed as follows:

y(k) =v(k)φ(k) =

M
j=1

vj(k)φj(k)

φ(k) =

φ1(k), . . . , φj(k), . . . , φM(k)

T
φj(k) = tanh

wj(k)
N
i=1

xi(k)

 (2)

where i = 1, . . . ,N , j = 1, . . . ,M , x(k) ∈ ℜ
N×1 is the input

vector given by (1),y(k) ∈ ℜ is the output of the neural network,v(k) ∈ ℜ
1×M and w(k) ∈ ℜ

1×M are the output and hidden layer
weights of the neural network, respectively, wj(k) ∈ ℜ, xi(k) ∈ ℜ,
φ(k) ∈ ℜ

M×1, φj(k) ∈ ℜ,vj(k) ∈ ℜ. Fig. 1 shows the architecture
of the feedforward neural network where one can see the input,
hidden, and output layers.

Fig. 1. Architecture of the neural network.

3. Linearization of the neural network

The linearization of the feedforward neural network is required
for the recursive least square algorithm design and for the stability
analysis.

According to the Stone–Weierstrass theorem, the unknown
nonlinear function f of (1) is approximated as follows:

y(k) = v∗φ∗k + ∈f =

M
j=1

vj∗φ∗j(k) + ∈f

φ∗k =

φ∗1(k), . . . , φ∗j(k), . . . , φ∗M(k)

T
φ∗j(k) = tanh


wj∗

N
i=1

xi(k)

 (3)

where φ∗(k) ∈ ℜ
M×1, ∈f = y(k) − v∗φ∗(k) ∈ ℜ is the modeling

error, φ∗j(k) ∈ ℜ, vj∗ ∈ ℜ, wj∗ ∈ ℜ, vj∗ ∈ ℜ and wj∗ ∈ ℜ are
the optimal parameters that can minimize the modeling error ∈f .
In the case of two independent variables, a function has a Taylor
series as follows:

f (ω1, ω2) = f (ω10 , ω20) +

ω1 − ω10

 ∂ f (ω1, ω2)

∂ω1

+

ω2 − ω20

 ∂ f (ω1, ω2)

∂ω2
+ rf (4)

where rf ∈ ℜ is the remainder of the Taylor series. ω1 and ω2
correspond to wj(k) ∈ ℜ andvj(k) ∈ ℜ, ω10 and ω20 correspond
to wj∗ ∈ ℜ and vj∗ ∈ ℜ, define wj(k) = wj(k) − wj∗ ∈ ℜ andvj(k) = vj(k) − vj∗ ∈ ℜ; therefore, the Taylor series is applied to
linearize (2) as follows:

v(k)φ(k) = v∗φ∗(k) +

M
j=1

wj(k)
∂v(k)φ(k)

∂wj(k)

+

M
j=1

vj(k)
∂v(k)φ(k)

∂vj(k)
+ rf (5)

where ∂v(k)φ(k)
∂wj(k)

∈ ℜ and ∂v(k)φ(k)
∂vj(k) ∈ ℜ, please note thatv(k)φ(k) =

M
j=1vj(k)φj(k) and v∗φ∗(k) =

M
j=1 vj∗φ∗j(k). As

all the parameters are scalars, the Taylor series is fully applicable.
Considering (2) and using the chain rule, it gives:

∂vkφ(k)
∂wj(k)

= vj(k)
∂φ(k)
∂wj(k)

=vj(k)
∂ tanh

wj(k)
N
i=1

xi(k)


∂wj(k)

= σj(k) (6)
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