
Neural Networks 75 (2016) 66–76

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Subspace segmentation by dense block and sparse representation
Kewei Tang a,∗, David B. Dunson c, Zhixun Su b,∗, Risheng Liu b, Jie Zhang a, Jiangxin Dong b

a Liaoning Normal University, Dalian, PR China
b Dalian University of Technology, Dalian, PR China
c Duke University, Durham, NC, USA

a r t i c l e i n f o

Article history:
Received 22 December 2014
Received in revised form 23 November
2015
Accepted 26 November 2015
Available online 7 December 2015

Keywords:
Disjoint
LRR
Subspace segmentation
2-norm

a b s t r a c t

Subspace segmentation is a fundamental topic in computer vision and machine learning. However, the
success of many popular methods is about independent subspace segmentation instead of the more flex-
ible and realistic disjoint subspace segmentation. Focusing on the disjoint subspaces, we provide theo-
retical and empirical evidence of inferior performance for popular algorithms such as LRR. To solve these
problems, we propose a novel dense block and sparse representation (DBSR) for subspace segmentation
and provide related theoretical results. DBSR minimizes a combination of the 1,1-norm and maximum
singular value of the representation matrix, leading to a combination of dense block and sparsity. We
provide experimental results for synthetic and benchmark data showing that ourmethod can outperform
the state-of-the-art.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Given a set of data points drawn from a union of subspaces,
subspace segmentation focuses on partitioning the data points
into groups, with each group corresponding to a subspace. It is of
substantial interest in broad computer vision and machine learn-
ing applications, such as image segmentation (Cheng, Liu, Wang,
Huang, & Yan, 2011; Lang, Liu, Yu, & Yan, 2012; Yang,Wright,Ma, &
Sastry, 2008), motion segmentation (Rao, Tron, Vidal, & Ma, 2010)
and face clustering (Ho, Yang, Lim, Lee, & Kriegman, 2003), and can
be formally defined as follows.

Definition 1 (Subspace Segmentation). Given a set of data points
X = [x1, . . . , xn] drawn from a union of N subspaces {Si}ki=1 with
unknowndimensions in am-dimensional Euclidean space, the task
of subspace segmentation is to segment all data points into their
respective subspace.

There aremainly two kinds of definitions about the relationship
between subspaces discussed in previous work. A collection of
N subspaces are independent if and only if dim(S1 + · · · +

SN) =
N

i=1 dim(Si), where dim(·) denotes the dimensionality of
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the subspace. Although the literature has often justified certain
algorithms by discussing the case of independent subspaces, most
of the methods are not only proposed for independent subspace
segmentation, as it is clearly overly-restrictive. As an illustration
of subspace segmentation, Fig. 1(a) has already appeared in many
articles (Elhamifar & Vidal, 2013; Liu, Lin, Yan et al., 2013; Vidal,
2011; Vidal, Ma, & Sastry, 2005), however, it does not satisfy the
independence assumption.

An alternative notion focuses on disjoint subspaces (Elhamifar
& Vidal, 2010, 2013; Li, Li, Jin, & Xue, 2012; Tang, Liu, Su, & Zhang,
2014). The subspaces {Si}Ni=1 are said to be disjoint if and only if
every two subspaces only intersect at the origin. If N subspaces are
disjoint,we can obtain dim(S1+· · ·+SN) ≤

N
i=1 dim(Si), implying

that independence is a special case of disjointness. An illustration
of subspace segmentation, used in many papers and shown in
Fig. 1(a), contains disjoint but not independent subspaces. In this
paper, ‘‘disjoint’’ refers to the disjoint but not independent case
for the sake of presentation. In addition, other complex cases of
subspace segmentation, such as the overlapping subspaces shown
in Fig. 1(b), appear in some applications (Zhang, Cao et al., 2013).
The methods (Ma, Yang, Derksen, & Fossum, 2008; Soltanolkotabi
& Candès, 2012) can handle this kind of mixture subspaces with
nontrivial intersections.

A lot of work (Lu, Feng, Lin, & Yan, 2013; Patel, Nguyen, & Vidal,
2013; Peng, Zhang, & Yi, 2013; Talwalkar, Mackey, Mu, Chang, &
Jordan, 2013; Tang et al., 2014; Vidal, 2011; Wang & Xu, 2013;
Wang, Xu, & Leng, 2013; Zhang, Sun, He, & Tan, 2013; Zografos,
Ellis, & Mester, 2013) has been done on subspace segmentation
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Fig. 1. Two subspace segmentation problems. (a) One plane and two lines; (b) Three planes.

in recent years, and can be roughly divided into four categories:
algebraic methods, iterative methods, statistical methods and
spectral clustering based methods according to the review (Vidal,
2011). As popular methods, spectral clustering based methods
achieve segmentation results by first building the affinity matrix
Z, and then applying (|Z| + |ZT

|)/2 to Normalized Cuts (NCUT)
(Shi & Malik, 2000). Because the data are usually assumed to be
arranged to satisfy the true segmentation results for the sake of
discussion, the block-diagonal affinity matrix is pursued, meaning
that data points in the same subspace have the largerweight, while
data points in different subspaces are assigned the lower weight.
Due to the importance of the block-diagonal property, the paper
Feng, Lin, Xu, and Yan (2014) proposed the block-diagonal prior
and showed how to integrate it into the model. As two methods
generating considerable discussions in the literature, Sparse
Subspace Clustering (SSC) (Elhamifar & Vidal, 2009, 2010, 2013)
and Low-Rank Representation (LRR) (Liu, Lin, Yan et al., 2013; Liu,
Lin, & Yu, 2010) are both spectral clustering based methods. In
order that a point can be represented as a linear combination of
points in the same subspace, SSCmakes a sparsity constraint on the
representation matrix while LRR imposes a low-rank restriction.

When the subspaces are independent, LRR and SSC can both
achieve a block-diagonal representation matrix. One problem we
have observed in practice is that the sparsity constraint in SSC can
result in a representationmatrix which is so sparse that theweight
of many data points in the same subspace is 0, leading to over-
segmentation. Theory (Nasihatkon & Hartley, 2011) implies that
SSC may over-segment the subspaces for dimensions greater than
3. LRR requires that the sampling is sufficient and the subspaces
are independent. The work Liu, Lin, la Torre, and Su (2012) and
Liu and Yan (2011) focused on the case of insufficient sampling,
proposed Latent Low-Rank Representation (LLRR) and Fix-Rank
Representation (FRR), respectively, both of which can also be
applied for feature extraction. The work Lu et al. (2012) andWang,
Yuan, Yao, Yan, and Shen (2011) proposed efficient algorithms
called Subspace Segmentation via Quadratic Programming (SSQP)
and Least Squares Regression (LSR), respectively. When the
sampling is sufficient and the subspaces are independent, they
can also obtain a block-diagonal solution. Moreover, the work
(Lu et al., 2012) estimated the difference of the coefficients in
the representation matrix and showed that LSR exhibits strong
grouping effect. Putting emphasis on grouping effect and sparsity
of the affinity matrix, Lu et al. proposed Correlation Adaptive
Subspace Segmentation (CASS) (Lu et al., 2013) for subspace
segmentation. The theoretical analysis in Lu et al. (2013) also
guaranteed that CASS can estimate a block-diagonal matrix for
independent subspace segmentation.

Unfortunately, in real-world problems, the independent sub-
space assumption is typically violated, but there has been little
consideration of optimization methods for disjoint subspace seg-
mentation. The work (Elhamifar & Vidal, 2010, 2013) implies that
the normalization preprocessing may help SSC obtain accurate

segmentation results when the subspaces are disjoint. The work
Tang et al. (2014) proposed Structure-Constrained Low-Rank Rep-
resentation (SC-LRR) to improve LRR for disjoint subspace segmen-
tation, with theoretical analysis implied that with a predefined
weight matrix SC-LRR can achieve block-diagonal affinity matrix.
However, it is still difficult to find the weight matrix meeting the
requirements of the theorem, even if the provided weight matrix
in Tang et al. (2014) can help SC-LRR outperform the state-of-the-
art. In this paper, we prove that when subspaces are disjoint but
not independent, LRR cannot produce a block-diagonalmatrix, and
thus may have poor performance. Motivated by our analysis of the
characteristics of the affinity matrix obtaining accurate subspace
segmentation results in both disjoint and independent cases, we
propose a Dense Block and Sparse Representation (DBSR)minimiz-
ing the 1,1-norm and 2-norm simultaneously. Compared with SC-
LRR, DBSR can performwell without the predefinedweightmatrix.
Moreover, DBSR can incorporate a weight matrix to constrain the
structure when it is available. The 2-norm in our model is the first
applied for subspace segmentation, with a closed form solution of
the 2-norm minimization model provided. Extensive experiments
on synthetic and benchmark data demonstrate that DBSR is an ef-
fective method. In summary, our contributions are as follows:

1. We present dense block and sparse representation (DBSR) as
an effective method for subspace segmentation, whether the
subspaces are independent or disjoint.

2. We analyze characteristics of the affinitymatrix appropriate for
subspace segmentation and confirm that LRR cannot obtain a
block-diagonal matrix for disjoint subspaces.

3. Ourmodel is the first to useminimization of 2-norm in this field.

The remainder of this paper is organized as follows. In Section 2,
we introduce the main notations. In Section 3 we provide a brief
review of LRR. In Section 4, we first analyze the characteristic of
the affinity matrix appropriate to subspace segmentation to give
ourmotivation and then propose our model. Numerical solution of
our model is provided in Section 5. In Section 6 some extensions
about our model have been made. Experimental results are shown
in Section 7. Finally, we conclude the paper in Section 8. Proofs are
primarily included in an Appendix.

2. Notation

We provide a summary of the main notations in this section.
Bold capital symbol denotes a matrix. In particular, I denotes the
identity matrix. The entries of matrices are denoted by bold capital
symbol using [·] with subscripts. For example, [M]ij denotes the
(i, j)th entry of the matrix M, [M]:i denotes the ith column of
matrix M, and [M]i: denotes the ith row of matrix M. Bold capital
symbol with superscripts or subscripts still denotes thematrix. For
instance, X denotes a matrix. Xi also denotes a matrix. Bold lower
case symbols denote vectors. The entries of vectors are denoted
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