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a b s t r a c t

The strength of association between a pair of data vectors is represented by a nonnegative real num-
ber, called matching weight. For dimensionality reduction, we consider a linear transformation of data
vectors, and define amatching error as the weighted sum of squared distances between transformed vec-
tors with respect to the matching weights. Given data vectors and matching weights, the optimal linear
transformation minimizing the matching error is solved by the spectral graph embedding of Yan et al.
(2007). This method is a generalization of the canonical correlation analysis, and will be called as match-
ing correlation analysis (MCA). In this paper, we consider a novel sampling scheme where the observed
matching weights are randomly sampled from underlying true matching weights with small probability,
whereas the data vectors are treated as constants. We then investigate a cross-validation by resampling
the matching weights. Our asymptotic theory shows that the cross-validation, if rescaled properly, com-
putes an unbiased estimate of the matching error with respect to the true matching weights. Existing
ideas of cross-validation for resampling data vectors, instead of resampling matching weights, are not
applicable here. MCA can be used for data vectors from multiple domains with different dimensions via
an embarrassingly simple idea of coding the data vectors. This method will be called as cross-domain
matching correlation analysis (CDMCA), and an interesting connection to the classical associative mem-
ory model of neural networks is also discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We have N data vectors of P dimensions. Let x1, . . . , xN ∈ RP

be the data vectors, and X = (x1, . . . , xN)T ∈ RN×P be the
data matrix. We also have matching weights between the data
vectors. Let wij = wji ≥ 0, i, j = 1, . . . ,N , be the matching
weights, and W = (wij) ∈ RN×N be the matching weight matrix.
The matching weight wij represents the strength of association
between xi and xj. For dimensionality reduction, we will consider
a linear transformation from RP to RK for some K ≤ P as
yi = ATxi, i = 1, . . . ,N,

or Y = XA, where A ∈ RP×K is the linear transformation
matrix, y1, . . . , yN ∈ RK are the transformed vectors, and Y =

(y1, . . . , yN)T ∈ RN×K is the transformed matrix. Observing X and
W , we would like to find A that minimizes thematching error

φ =
1
2

N
i=1

N
j=1

wij∥yi − yj∥2
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under some constraints. We expect that the distance between yi
and yj will be small whenwij is large, so that the locations of trans-
formed vectors represent both the locations of the data vectors
and the associations between data vectors. The optimization prob-
lem for finding A is solved by the spectral graph embedding for di-
mensionality reduction of Yan et al. (2007). Similarly to principal
component analysis (PCA), the optimal solution is obtained as the
eigenvectors of the largestK eigenvalues of somematrix computed
from X and W . In Section 3, this method will be formulated by
specifying the constraints on the transformed vectors and also reg-
ularization terms for numerical stability. We will call the method
as matching correlation analysis (MCA), since it is a generalization
of the classical canonical correlation analysis (CCA) of Hotelling
(1936). The matching error will be represented by matching corre-
lations of transformed vectors, which correspond to the canonical
correlations of CCA.

MCA will be called as cross-domain matching correlation anal-
ysis (CDMCA) when we have data vectors from multiple domains
with different sample sizes and different dimensions. Let D be the
number of domains, and d = 1, . . . ,D denote each domain. For
example, domain d = 1 may be for image feature vectors, and
domain d = 2 may be for word vectors computed by word2vec
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(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) from texts,
where the matching weights between the two domains may rep-
resent tags of images in a large dataset, such as Flickr. From do-
main d, we get data vectors x(d)

i ∈ Rpd , i = 1, . . . , nd, where
nd is the number of data vectors, and pd is the dimension of the
data vector. Typically, pd is hundreds, and nd is thousands to mil-
lions. We would like to retrieve relevant words from an image
query, and alternatively retrieve images from a word query. Given
matching weights across/within domains, we attempt to find lin-
ear transformations of data vectors from multiple domains to a
‘‘common space’’ of lower dimensionality so that the distances be-
tween transformed vectors well represent the matching weights.
This problem is solved by an embarrassingly simple idea of coding
the data vectors, which is similar to that of Daumé III (2007). Each
data vector from domain d is represented by an augmented data
vector xi of dimension P =

D
d=1 pd, where only pd dimensions are

for the original data vector and the rest of P − pd dimensions are
padded by zeros. In the case of D = 2 with p1 = 2, p2 = 3, say, a
data vector (1, 2)T of domain 1 is represented by (1, 2, 0, 0, 0)T ,
and (3, 4, 5)T of domain 2 is represented by (0, 0, 3, 4, 5)T . The
number of total augmented data vectors isN =

D
d=1 nd. Note that

the above mentioned ‘‘embarrassingly simple coding’’ is not actu-
ally implemented by padding zeros in computer software; only the
nonzero elements are stored in memory, and CDMCA is in fact im-
plemented very efficiently for sparse W . CDMCA is illustrated in
a numerical example of Section 2. CDMCA is further explained in
Appendix A.1, and an interesting connection to the classical as-
sociative memory model of neural networks (Kohonen, 1972;
Nakano, 1972) is also discussed in Appendix A.2.

CDMCA is solved by applying the single-domain version of
MCA described in Section 3 to the augmented data vectors, and
thus we only discuss the single-domain version in this paper.
This formulation of CDMCA includes a wide class of problems
of multivariate analysis, and similar approaches are very popular
recently in pattern recognition and vision (Correa, Eichele, Adalı,
Li, & Calhoun, 2010; Gong, Ke, Isard, & Lazebnik, 2014; Kan, Shan,
Zhang, Lao, & Chen, 2012; Shi, Liu, Fan, & Yu, 2013; Wang, He,
Wang, Wang, & Tan, 2013; Yuan & Sun, 2014; Yuan, Sun, Zhou, &
Xia, 2011). CDMCA is equivalent to the method of Nori, Bollegala,
and Kashima (2012) for multinomial relation prediction if the
matching weights are defined by cross-products of the binary
matrices representing relations between objects and instances.
CDMCA is also found in Huang, Shan, Zhang, Lao, and Chen (2013)
for the case of D = 2. CDMCA reduces to the multi-set canonical
correlation analysis (MCCA) (Kettenring, 1971; Takane, Hwang, &
Abdi, 2008; Tenenhaus & Tenenhaus, 2011) when n1 = · · · = nD
with cross-domain matching weight matrices being proportional
to the identity matrix. It becomes the classical CCA by further
letting D = 2, or it becomes PCA by letting p1 = p2 = · · · =

pD = 1.
In this paper, we discuss a cross-validation method for

computing the matching error of MCA. In Section 4, we will define
two types of matching errors, i.e., fitting error and true error, and
introduce cross-validation (cv) error for estimating the true error.
In order to argue distributional properties of MCA, we consider
the following sampling scheme. First, the data vectors are treated
as constants. Similarly to the explanatory variables in regression
analysis, we perform conditional inference given data matrix X ,
although we do not avoid assuming that xi’s are sampled from
some probability distribution. Second, the matching weights wij
are randomly sampled from underlying true matching weights w̄ij
with small probability ϵ > 0. The value of ϵ is unknown and it
should not be used in our inference. Let zij = zji ∈ {0, 1}, i, j =

1, . . . ,N , be samples from Bernoulli trial with success probability
ϵ, where the number of independent elements is N(N + 1)/2 due

to the symmetry. Then the observedmatching weights are defined
as

wij = zijw̄ij, P(zij = 1) = ϵ. (1)

The true matching weight matrix W̄ = (w̄ij) ∈ RN×N is treated
as an unknown constant matrix with elements w̄ij = w̄ji ≥ 0.
This setting will be appropriate for a large-scale data, such as those
obtained automatically from the web, where only a small portion
W of the true association W̄ may be obtained as our knowledge.

In Section 4.2, we will consider a resampling scheme corre-
sponding to (1). For the cross-validation, we resampleW ∗ fromW
with small probability κ > 0, whereas X is left untouched. Our
sampling/resampling scheme is very unique in the sense that the
source of randomness is W instead of X , and existing results of
cross-validation for resampling from X such as Stone (1977) and
Golub, Heath, and Wahba (1979) are not applicable here. The tra-
ditional method of resampling data vectors is discussed in Sec-
tion 4.3.

The true error is defined with respect to the unknown W̄ , and
the fitting error is defined with respect to the observed W . We
would like to look at the true error for finding appropriate values of
the regularization terms (regularization parameters are generally
denoted as γ throughout) and the dimension K of the transformed
vectors. However, the true error is unavailable, and the fitting
error is biased for estimating the true error. The main thrust of
this paper is to show asymptotically that the cv error, if rescaled
properly, is an unbiased estimator of the true error. The value of
ϵ is unnecessary for computing the cv error, but W should be a
sparse matrix. The unbiasedness of the cv error is illustrated by a
simulation study in Section 5, and it is shown theoretically by the
asymptotic theory of N → ∞ in Section 6.

2. Illustrative example

Let us see an example of CDMCA applied to theMNIST database
of handwritten digits (see Appendix B.1 for the experimental
details). The number of domains is D = 3 with the number of
vectors n1 = 60,000, n2 = 10, n3 = 3, and dimensions p1 = 2784,
p2 = 100, p3 = 50. The handwritten digit images are stored
in domain d = 1, while domain d = 2 is for the digit labels
‘‘zero’’, ‘‘one’’, . . . , ‘‘nine’’, and domain d = 3 is for attribute labels
‘‘even’’, ‘‘odd’’, ‘‘prime’’. This CDMCA is also interpreted as MCA
with N = 60,013 and P = 2934.

The elements of W̄ are simply the indicator variables (called
dummy variables in statistics) of image labels. Instead of working
on W̄ , here we made W by sampling 20% of the elements from W̄
for illustrating howCDMCAworks. The optimalA is computed from
W using the method described in Section 3.3 with regularization
parameter γM = 0.1. The data matrix X is centered, and the
transformed matrix Y is rescaled. The first and second elements
of yi, namely, (yi1, yi2), i = 1, . . . ,N , are shown in Fig. 1. For
the computation of A, we do not have to specify the value of
K in advance. Similar to PCA, we first solve the optimal A =

(a1, . . . , aP) ∈ RP×P for the case of K = P , then take the first
K columns to get the optimal A = (a1, . . . , aK ) ∈ RP×K for
any K ≤ P . We observe that images and labels are placed in the
common space so that they represent both X andW . Given a digit
image, we may find the nearest digit label or attribute label to tell
what the image represents.

The optimal A of K = 9 is then computed for several γM val-
ues. For each A, the 10000 images of test dataset are projected to
the common space and the digit labels and attribute labels are pre-
dicted.We observe in Fig. 2(a) that the classification errors become
small when the regularization parameter is around γM = 0.1.
Since xi does not contribute to A if

N
j=1 wij = 0, these error rates

are computed using only 20% of X ; they improve to 0.0359 (d = 2)
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