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a b s t r a c t

In this paper, we investigate a class of memristor-based BAM neural networks with time-varying
delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions
of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique.
Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the
existence of periodic solution. By applying the theory of set-valued maps and functional differential
inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for
ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM
neural networks. The obtained results expand and complement some previous work onmemristor-based
BAMneural networks. Finally, a numerical example is provided to show the applicability and effectiveness
of our theoretical results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Professor Chua (1971) introduced memristor in 1971, and un-
til 2008, a research team at the Hewlett–Packard labs announced
that they had build a prototype of a solid-state and nanometer-
sizememristor (Strukov, Snider, Stewart, &Williams, 2008; Tour &
He, 2008; Ventra, Pershin, & Chua, 2009). Memristor is a passive
two-terminal electronic device described by nonlinear relation-
ship links charge and flux, the resistance of a voltage-controlled
memristor is uniquely determined by the time history of voltage
across it and is indefinitely storable by the device once the con-
trolling source is turned off (Raja & Mourad, 2010; Ventra et al.,
2009). Analogous to the plasticity of biological synapse, memris-
tor can change its memristance by the historic current through
itself. From then on, memristor device has been the focus of re-
cent research in the electrical and electronic engineering commu-
nities (Chua, 1971; Raja &Mourad, 2010; Shi, Duan, &Wang, 2015;
Strukov et al., 2008; Tour & He, 2008; Ventra et al., 2009). In the
brain-like neuronmorphic circuits (Raja &Mourad, 2010; Shi et al.,
2015), memristor may be used as a non-volatile memory switch,
it replaces the traditional circuit structures, which consist of tran-
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sistors and capacitors, to serve as synapse to transmit information
between neurons (Shi et al., 2015).

Owing to this important feature, we can replace resistor with
memristors to build some newmodels of neural networks that em-
ulates the human brain, and enable us to further study the dynami-
cal behaviors for comprehending the function of human brain (Cao
&Wan, 2014; Duan, Hu, Dong, &Mazumder, 2015; Hu, Feng, Duan,
& Liu, 2015; Pershin, Fontaine, & Di Ventra, 2009). For example, we
know that a Hopfield neural network model can be implemented
in a circuit where the connection weights are implemented by re-
sistors. Motivated by these facts, by using memristors instead of
resistors, many authors have studied a newmodel, where the con-
nection weights change according to its state, that is, it is a state-
dependent switching neural network dynamical systems, which
is said to be the memristor-based neural network (Guo, Wang, &
Yan, 2013; Hu & Wang, 2010; Wu & Zeng, 2012). Moreover, the
analysis of the memristor-based neural networks has been found
useful to address a number of interesting engineering tasks, such
as static friction, impacting machines, power circuits, switching in
electronic circuits and many others, therefore the dynamical be-
haviors of memristor-based neural networks have received a great
deal of attention in the previous works (Cai & Huang, 2014; Chen,
Zeng, & Jiang, 2014; Duan & Huang, 2014; Guo et al., 2013; Hu &
Wang, 2010; Kim, Du, & Sheridan, 2015; Li & Cao, 2015;Mathiyala-
gan, Park, & Sakthivel, 2015; Nie, Zheng, & Cao, 2015; Qin, Wang,
& Xue, 2015; Wan & Cao, 2015; Wu & Zeng, 2012; Zhang, Shen, &
Yin, 2013).
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As is well known, the property of periodic oscillatory solutions
is very interesting and valuable. It has found applications in
pattern recognition, associative memories, learning theory and so
on (Halanay, 1966; Krasnosel’skii & Zabreiko, 1984; Li, Bohner,
& Wang, 2015; Mawhin & Gaines, 1977; Yong & Zheng, 1995;
Yoshizawa, 1963; Zhang, Li, &Huang, 2015).Meanwhile, the delays
are actually encountered in practical implementation, due to the
finite switching speed of the neuron amplifiers. It also knows that
time delay is one of the main sources for causing instability and
poor performances of networks. Therefore, it is very important
to study the global stability and periodicity of memristor-based
neural networks with time-varying delays. There have been many
results on the existence and global stability of periodic solution of
memristor-based neural networks with time-varying delays (Cai &
Huang, 2014; Chen et al., 2014; Duan & Huang, 2014; Wan & Cao,
2015; Zhang et al., 2013). For example,Wan andCao (2015) studied
the periodicity and synchronization in coupled memristive neural
networks with supremums via generalized halanay inequality. The
periodic solution problem of memristor-based neural networks
was firstly proposed viaMawhin-like coincidence theorem in Chen
et al. (2014) and Duan and Huang (2014). Zhang et al. (2013)
proposed memristor-based systems and some testable algebraic
criteria were derived to achieve existence and stability of periodic
solution. Cai and Huang (2014) employed the set-valued version of
Krasnoselskii’ fixed point theorem in a cone to derive the existence
of the positive periodic solution of memristor-based BAM neural
networks with delays. However, to the best of our knowledge,
there are very few works on the existence and stability of periodic
solution of the memristor-based BAM neural network with time-
varying delays.

Motivated by the above discussions, in this paper, we will deal
with the problem of existence and global exponential stability of
periodic solution for memristor-based BAM neural networks with
delays, the method used here involves Yoshizawa-like theorem,
functional differential inclusions theory and inequality technique.
The main results, which are new and complement previously
known results.

This paper is organized as follows. In Section 2, the model
description and preliminaries are given. In Section 3, the existence
of Filippov periodic solution of memristor-based BAM neural
networks with discontinuous right-hand sides is considered.
In Section 4, some new testable algebraic criteria are derived
for ensuring the uniqueness and global exponential stability of
periodic solution of memristor-based BAM neural networks. In
Section 5, the applicability and effectiveness of our theoretical
results are shown by a numerical example.

Notations. For any column vectors z = (z1, z2, . . . , zn)T ∈ Rn and
y = (y1, y2, . . . , yn)T ∈ Rn, ⟨z, y⟩ = zTy =

n
i=1 ziyi represents

the scalar product of z, y, where the superscript T denotes the
transpose operator. If z ∈ Rn, we define the Euclidean norm
∥z∥ = [

n
i=1 |zi|p]

1
p , p ≥ 1. Given a set E ⊂ Rn, µ(E) denotes

the Lebesgue measure of set E, co[E] denotes the convex hull of E.
Furthermore, if z ∈ Rn and ρ > 0, B(z, ρ) is the ball of center z
and radius ρ. Given the function V (z):Rn

→ R,∇V (z) denotes the
gradient of V (z) and ∂V (z)means Clarke’s generalized gradient of
V (z). For a given continuousω-periodic function f (t) defined onR,
we define f u = supt∈[0, ω] |f (t)|, f l = inft∈[0, ω] |f (t)|.

2. Model formulation and preliminaries

In this paper, referring to some relevantworks in Cai andHuang
(2014), Chen et al. (2014), Duan and Huang (2014), Guo et al.
(2013), Hu and Wang (2010), Kim et al. (2015), Li and Cao (2015)
Mathiyalagan et al. (2015), Qin et al. (2015), Wan and Cao (2015),

Wu and Zeng (2012), Zhang et al. (2013), which deal with the
detailed construction of some general classes of memristor-based
neural networks from the aspects of circuit analysis andmemristor
physical properties. We consider a general class of memristor-
based bidirectional associative memory neural networks with
time-varying delays described by the following equations:

dxi(t)
dt

= −ai(t)xi(t)+

m
j=1

aij(xi(t))fj(yj(t))

+

m
j=1

bij(xi(t))fj(yj(t − τ(t)))+ Ii(t),

dyj(t)
dt

= −cj(t)yj(t)+

n
i=1

cji(yj(t))gi(xi(t))

+

n
i=1

dji(yj(t))gi(xi(t − τ(t)))+ Jj(t),

(1)

for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, where n, m correspond to
the number of units in a neural network, xi(t) denotes the state
variable associated with the ith neuron, yj(t) denotes the state
variable associated with the jth neuron, ai(t) > 0 (cj(t) > 0)
represents the rate with which the ith (jth) unit will reset its
potential to the resting state in isolation when disconnected from
thenetwork and external inputs at time t , respectively, fj(yj(t)) and
gi(xi(t)) denote the neuron activation functions, τ(t) corresponds
to the transmission delay and satisfy 0 ≤ τ(t) ≤ τ (τ =

max0≤t≤ω{τ(t)} is a positive constant). Ii(t), Jj(t) are continuousω-
periodic external input functions, aij(xi(t)), bij(xi(t)), cji(yj(t)) and
dji(yj(t)) are memristive connection weights, respectively, which
are defined as follows:

aij(xi(t)) =


a∗

ij, |xi(t)| < Ti,
a∗∗

ij , |xi(t)| > Ti,

bij(xi(t)) =


b∗

ij, |xi(t)| < Ti,
b∗∗

ij , |xi(t)| > Ti,

cji(yj(t)) =


c∗

ji , |yj(t)| < Υj,

c∗∗

ji , |yj(t)| > Υj,

dji(yj(t)) =


d∗

ji, |yj(t)| < Υj,

d∗∗

ji , |yj(t)| > Υj,

for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, where aij(±Ti) = a∗

ij or a
∗∗

ij ,
bij(±Ti) = b∗

ij or b
∗∗

ij , cji(±Υj) = c∗

ji or c
∗∗

ji , dji(±Υj) = d∗

ji or d
∗∗

ji ,
switching jumps Ti > 0, Υj > 0, a∗

ij, a
∗∗

ij , b
∗

ij, b
∗∗

ij , c
∗

ji , c
∗∗

ji , d
∗

ji, d
∗∗

ji are
all constants.

For convenience, we mainly apply the framework of Filippov
solutions in discussing the solution of memristor-based BAM
neural networks (1) with time-varying delays. Furthermore, we
also present some basic concepts and definitions about the set-
value map, differential inclusion and nonsmooth analysis, which
will be used in the paper. Firstly, we introduce the following
concepts and definitions.

Definition 1 (Aubin & Cellina, 1984). Suppose that to every point
z of a set E ⊂ Rn, there corresponds a nonempty set F(z) ⊂ Rn,
then z → F(z) is called a set-valued map from E → Rn. F is said
to have a fixed point if there is z ∈ E such that z ∈ F(z).

Definition 2 (Aubin & Cellina, 1984). A set-valued map F with
nonempty values is said to be upper semi-continuous (USC) at
z0 ∈ E ⊂ Rn, if β(F(z), F(z0)) → 0 as z → z0 (i.e., for any open set
N containing F(z0), there exists a neighborhood M of z0 such that
F(M) ⊂ N). F(z) is said to have a closed (convex, compact) image
if for each z ∈ E, F(z) is closed (convex, compact).
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