Neural Networks 72 (2015) 62-74

journal homepage: www.elsevier.com/locate/neunet

Contents lists available at ScienceDirect

Neural Networks

2015 Special Issue

Goal-oriented robot navigation learning using a multi-scale

space representation

@ CrossMark

M. Llofriu®“*, G. Tejera‘, M. Contreras”, T. Pelc®, ].M. Fellous”, A. Weitzenfeld *

2 University of South Florida, United States
b University of Arizona, United States
¢ Universidad de la Republica, Uruguay

ARTICLE INFO ABSTRACT

Article history:
Available online 19 October 2015

Keywords:

Place cells

Hippocampus

Spatial cognition model
Multiscale spatial representation
Reinforcement learning

There has been extensive research in recent years on the multi-scale nature of hippocampal place cells
and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In
this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning
during goal-oriented navigation when compared to a spatial cognition system composed of single scale
place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to
find the shortest path to the goal after a number of learning trials. Synaptic connections are modified
using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model
is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale

representations favor goal-oriented navigation task learning.
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1. Introduction

We present a model for spatial cognition based on the multi-
scale organization of the dorsal-ventral axes of the hippocampus.
The theoretical concept of a cognitive map in the brain was first
proposed by Tolman (1948) as the essential module responsible
for estimating the rat’s position in the environment. Through
an extensive review of the literature at the time, O’Keefe and
Nadel proposed that the cognitive map laid within the brain’s
hippocampus (O'Keefe & Nadel, 1978). This suggestion was in
part based on the discovery of O’Keefe and Dostrovsky (O’Keefe
& Dostrovsky, 1971) place cells in the rat’s hippocampus, termed
as such due to the high correlation between their firing and the
rat location in the environment. The region of the environment
specific to each cell, is called their place field.

This property turns these cells into a rich source of information
for navigational purposes, as they provide an encoding of the rat
location. Even though no individual place cell provides accurate
location information by itself, it has been shown that the location
of the animal can be predicted with an error of 1 cm based solely on
the activity levels of an ensemble of cells (Guger et al., 2011; Jensen
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& Lisman, 2000; Wilson & McNaughton, 1993; Zhang, Ginzburg,
McNaughton, & Sejnowski, 1998).

The discovery of grid cells in the rat’s Medial Entorhinal
Cortex (MEC) was first published by Fyhn, Molden, Witter, Moser,
and Moser (2004), it suggested that grid cell firing signaled
the rat’s changing position in the environment. Hafting, Fyhn,
Molden, Moser, and Moser (2005) presented findings that grid
node spacing increased in a modular fashion in MEC in overall
correspondence with the gradual increase in place field size along
the dorsoventral axis of the hippocampus (Brun et al., 2008; Jung,
Wiener, & McNaughton, 1994; Maurer, Vanrhoads, Sutherland,
Lipa, & McNaughton, 2005). For a review of the multi-scale
representation of space, we refer the reader to Geva-Sagiv, Las,
Yovel, and Ulanovsky (2015).

The MEC also contains head-direction cells whose activity is re-
lated to the current head orientation of the rat (Blumberg, 2015).
Altogether, these discoveries suggest that spatial navigation may
originate in a fundamental multi-scale representation of space
along the dorso-ventral axis of the hippocampal formation, mod-
ulated by self-motion and external cues that includes, although
not limited to, visual detection of distal and proximal landmarks.
Recent work has shown a gradient of head direction cells tuning
width along the dorso-ventral axis of the MEC (Giocomo et al.,
2014) in the upper layers (inputs to the hippocampus), but not in
the deep layers. While there is some theoretical evidence that grid
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cells may help the accuracy of spatial navigation (Guanella & Ver-
schure, 2007), there is little evidence that they do so experimen-
tally (Hales et al., 2014).

There is extensive research on spatial cognition models inspired
by place cells coding in the rat’s hippocampus used to evaluate
goal-oriented spatial navigation with simulation and with real
robots (Arleo, Smeraldi, & Gerstner, 2004; Barrera & Weitzenfeld,
2008; Brown & Sharp, 1995; Burgess, Recce, & O’Keefe, 1994;
Caluwaerts et al., 2012; Dollé, Sheynikhovich, Girard, Chavarriaga,
& Guillot, 2010; Filliat & Meyer, 2002; Gaussier, Revel, Banquet, &
Babeau, 2002; Guazzelli, Bota, Corbacho, & Arbib, 1998; Krichmar,
Nitz, Gally, & Edelman, 2005; Milford & Wyeth, 2007, 2009; Pata,
Escuredo, Lallée, & Verschure, 2014; Recce & Harris, 1996; Redish
& Touretzky, 1997; Sukumar, Rengaswamy, & Chakravarthy,
2012; Tejera, Barrera, Fellous, Llofriu, & Weitzenfeld, 2013).
However, few of them incorporate some aspects of multi-scale
representation of space.

Chen, Jacobson, Erdem, Hasselmo, and Milford (2013) imple-
ment an array of support vector machines on video segments to
recognize places, where different segment lengths represent dif-
ferent scales of representation. The introduction of larger scales of
representation improves recall in their classification system. Pata
et al. (2014) develops a model of the hippocampus to explore the
functional differences of DG and CA3 while accounting for the dif-
ferences in scale across the dorsoventral axis. These two have a
strong focus on place and grid cell formation. Our work, in contrast,
focuses in goal directed navigation, on how to use the information
provided by these cell to reach a desired goal.

Erdem and Hasselmo (2014) adds multiple scales of represen-
tation to a previous model of spatial navigation based on forward
lookup probes, which resemble short-wave ripple (SWR) activity
in the hippocampus. The addition of larger scales of representation
improves the effective distance of forward lookup probes, improv-
ing navigational performance. We believe our work complements
this approach. Short-wave ripple activity have been suggested to
guide navigation (Johnson & Redish, 2007; Pfeiffer & Foster, 2013),
but it occurs during sleep or when the rat is still (Foster & Wilson,
2006). Thus, while Erdem and Hasselmo (2014) work focuses on
high level planning during key decision points, our model focuses
on the decision making that takes place while the rat is in motion.
Our working hypothesis is that this decision making can also ben-
efit from different scales of representation.

We based our study on the biological role of dorsal and
ventral hippocampal place cells and contrast the roles of the
small, medium and large place fields represented across the septo-
temporal (dorsoventral) axis of the hippocampus. We develop a
neural architecture of multi-scale hippocampal place cells to be
evaluated during a goal-oriented robot navigational task. This task
involves learning to locate a fixed goal in a circular arena, inspired
by the Morris’ water maze task, where instead of a submerged
platform, the goal can only be recognized when the robot is very
close to it (de Jong, Gereke, Martin, & Fellous, 2011). Distal cues
are set on the perimeter of the arena to facilitate localization. The
task involves multiple trials during which navigation to the goal
is reinforced by applying a Q-Learning algorithm (Sutton & Barto,
1998), inspired by the neuro-modulatory effects of dopamine
(Cox & Krichmar, 2009), and adapted to the multi-scale nature of
place fields. The task is evaluated using computer simulations and
physical robots. Section 2 describes the spatial cognition model,
Section 3 presents the goal-oriented task and the experimental
layout, Section 4 presents simulated and robot experimental
results, Section 5 includes a discussion of the results and Section 6
provides conclusions and discussion of future work.

2. The spatial cognition model

The spatial cognition model is comprised of six main modules,
described below and shown in Fig. 1.

It has been proposed that navigation involves the interaction
of four components: place cells, head direction cells, local view
and path integration (Redish & Touretzky, 1997; Touretzky, 2002).
We consider our path integration and local view components as
solved. Namely, place cell firing values are derived from sources
of location information directly, rather than computing them from
path integration and visual information, as will be explained in
the Experiments section. Thus, we focus in this work on the place
cell and head direction cells components and their contribution
to learning using multiple scales. Our model uses this multi-
scale representation as the information source for a reward driven
learning system (Krichmar & Réhrbein, 2013).

2.1. Modules

Place Cell Module. This module calculates the firing of a population
artificial place cells. They take the current position x of the robot as
input and calculate the firing rate as Eq. (1).
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Where f; is the firing rate of cell i, ¢; its preferred location and
X; its covariance matrix. Namely, each cell fires according to a
2D gaussian function with a center on each place cell preferred
position, as modeled by O'Keefe and Burgess (1996).

The key of this work involves the use of different scales of
place cells, which we map to choosing different X. The covariances
matrix are always of the form %I, where o models de specificity
and [ is the identity matrix.

Head Direction Module. This model computes the firing of a
population of artificial head direction cells. This module takes the
current heading 6 of the robot and compute the firing rate of each
cells as Eq. (2).

o 91)2>

202

fi=exp (— (2)

Where f; is the firing rate of the ith head direction cell, o
its variance and 6; its preferred orientation. Thus, this cells are
also computed as a gaussian function with the peak in the cell’s
preferred value.

Multi-Scale QL Module. This module performs Q-Learning on the
information provided by the place cells and head direction cells.
Place and orientation information is obtained by selecting all
possible pairs from both sets and computing the resulting activity
as the product of both the place cell and head direction cell. This
combined source of information is passed onto the QL module,
which will be explained in detail below.

Taxic Behavior Module. This behavior moves towards a visible goal.
It works cooperatively with the QL learning module by assigning
a fixed value to the action that will take the robot to the goal. In
the framework proposed by Guazzelli et al. (1998), this module
corresponds to the execution of the affordance of going to a visible
goal.

Exploration Behavior. This module promotes exploration in early
phases of an experiment. The exploration value is calculated
as shown in Eq. (3), where episode is the episode number,
maxReward is the maximum reward possible given to the robot,
and B is a given parameter that models how fast the exploration
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