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ARTICLE INFO ABSTRACT

Arfic{e history: Constructing an informative and discriminative graph plays an important role in various pattern recogni-
Received 3 December 2013 tion tasks such as clustering and classification. Among the existing graph-based learning models, low-rank
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ing and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled sam-
ples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR
related approaches fail to consider the geometrical structure of data, which has been shown beneficial
for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed
manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take
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Graph construction the data local manifold structure into consideration, which can be identified by the geometric sparsity
Semi-supervised learning idea; specifically, the local tangent space of each data point was sought by solving a sparse representation
Face recognition objective. Therefore, the graph to depict the relationship of data points can be built once the manifold

information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve
the geometric constraints revealed in the data space. As a result, MLRR combines both the global informa-
tion emphasized by low-rank property and the local information emphasized by the identified manifold
structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR
is an excellent method in comparison with several state-of-the-art graph construction approaches.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction models. Nie et al. presented a semi-supervised orthogonal discrim-
inant analysis algorithm via label propagation by solving the or-

For many machine learning and pattern recognition applica-  thogonal constrained trace ratio optimization problem (Nie, Xi-
tions, we often have no sufficient labeled samples, which are usu- ang, Jia, & Zhang, 2009). Yu et al. proposed a two stage method

ally har.d or EXPEI?SiV? to acquire. However, unlabe.led .samples in which an unsupervised basis learning phase was followed by a
are easier to obtain via the Internet for some applications. For  gperyised function learning, for SSL on high dimensional nonlin-
simultaneously utilizing both limited labeled samples and many ear manifolds (Yu, Zhang, & Gong, 2009). A unified framework for

unlabpled samples,‘ SSF‘ has recelveq Increasing attention in semi-supervised and unsupervised dimensionality reduction was
learning-based applications. SSL algorithms usually make use of L
‘ . . proposed in Nie, Xu, Tsang, and Zhang (2010). A SSL framework,
the smoothness, cluster, and manifold assumptions, which can ¢ d flexibl itold embeddi iders th ifold st
be roughly categorized into four groups: generative models, low- ermed flexible manitold embedding, considers the manitoid struc-
density separation models, heuristic models, and graph-based ture of both labeled and unlabeled samples. Karasuyama et al. de-
signed a parameterized similarity function to define the graph edge
weights (Karasuyama & Mamitsuka, 2013), which represent both
- o ) ) similarity and local representation weight simultaneously. A de-
Corresponding author at: Center for Brain-like Computing and Machine 45104 reyiew of recent work on SSL can be found in Zhu (2008). In
Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong K X
University, Shanghai 200240, China. this paper, we focus our work on graph-based SSL due to its excel-
E-mail addresses: stany.peng@gmail.com (Y. Peng), bllu@sjtu.edu.cn (B.-L. Lu). lent performance in practice.
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Graph-based SSL relies on using a graph G = (V, E, W) to rep-
resent the data structure, where V is a set of vertices and each
vertex represents a data point, E C V x V is a set of edges con-
necting related vertices, and W is an adjacency matrix measuring
the pairwise weights between vertices. Generally, the graph is con-
structed by using the relationship of domain knowledge or similar-
ity of samples. Once the graph is constructed, each sample spreads
its label information to neighbors over the graph until a global sta-
ble state is achieved on the whole data set. Thus, both labeled and
unlabeled samples remarkably affect the graph construction. How
to construct a good graph for representing data structure is critical
for graph-based SSL. Recently, some graphs have been well investi-
gated, such as k nearest neighbors (KNN) graph, local linearly em-
bedding (LLE)-based graph (Roweis & Saul, 2000), graph for label
propagation based on linear neighborhoods (LNP) (Wang & Zhang,
2008), sparse representation-based graphs (Lu, Zhou, Tan, Shang,
& Zhou, 2012; Yan & Wang, 2009), and sparse probability graph
(SPG) (He, Zheng, Hu, & Kong, 2011).

Sparse representation-based graph is motivated by that each
datum can be reconstructed by the sparse linear superposition
of other data points (Cheng, Yang, Yan, Fu, & Huang, 2010) and
the sparse reconstruction coefficients are derived by solving an
£1-norm regularized least square optimization problem. Unlike
sparse representation which enforces the representation coeffi-
cients to be sparse, the recently proposed LRR can obtain a low-
rank coefficient by solving a rank minimization problem. LRR has
been widely used for various applications such as subspace seg-
mentation (Liu, Lin, & Yu, 2010; Luo, Nie, Ding, & Huang, 2011),
face recognition (Chen, Wei, & Wang, 2012) and multitask learn-
ing (Chen, Zhou, & Ye, 2011). The graph constructed by LRR can
be used for many learning tasks such as spectral clustering (Liu
et al, 2010) and SSL (Yang, Wang, Wang, Han, & Jiao, 2013). Sev-
eral improved models have been proposed to alleviate the draw-
backs of the original LRR algorithm on SSL. Non-negative low-rank
and sparse (NNLRS) graph (Zhuang, Gao, Lin, Ma, Zhang and Yu,
2012) was proposed by imposing the non-negative and sparse con-
straints on the low-rank representation coefficient. Zheng et al.
presented an algorithm to construct the graph based on low-rank
representation with local constraint (LRRLC) (Zheng, Zhang, Jia,
Zhao, Guo, Fu and Yu, 2013) in which the local structure is pre-
served by a locally constrained regularization and the global struc-
ture is preserved by LRR. A graph regularization term was added on
the LRR objective and the graph regularized low-rank representa-
tion (GLRR) model was formulated for destriping of hyperspectral
images in Lu, Wang, and Yuan (2013).

Recently, researchers have considered the case when data is
drawn from sampling a probability distribution that has support on
or near a submanifold of an ambient space. Here, a d-dimensional
submanifold of an Euclidean space RM is a subset M¢ C R™, which
locally looks like a flat d-dimensional Euclidean space (Lee, 2012).
It has been shown that learning performance can be significantly
enhanced if the underlying manifold structure can be properly
identified (Cai, He, & Han, 2011; Cai, He, Han, & Huang, 2011;
Zheng, Bu, Chen, Wang, Zhang, Qiu and Cai, 2011).

Motivated by the recent progress on LRR and manifold
learning, we propose a novel manifold low-rank representation
model to build graph for semi-supervised classification. The basic
motivation behind MLRR is to explicitly combine the global and
local geometrical structure of data together in graph construction.
In MLRR, the global structure is considered by the low-rank
property and the local structure is emphasized by the manifold
identification. Different from LRRLC and GLRR, which identify the
manifold based on the Euclidean distance between data pairs,
MLRR adopts the geometric sparsity idea (Elhamifar & Vidal, 2011)
to approximately seek the tangent space of each data point. Here
the multiple manifolds underlying the data set are assumed to

be composed of many local tangent spaces (Zhang & Zha, 2004).
We incorporate a regularizer into the LRR objective, aiming at
enforcing the low-rank coefficients to preserve the identified
manifold structure of data. Similar to NNLRS (Zhuang et al., 2012),
we also constrain the representation coefficients to be sparse
and non-negative. By properly identifying the manifold structure,
MLRR can obtain excellent experimental results in comparison
with several LRR variants and other state-of-the-art approaches.

The remainder of this paper is organized as follows. We
review the original LRR, several related LRR variants and optimiza-
tion method in Section 2. In Section 3, we present the formula-
tion of proposed manifold low-rank representation model and its
implementation by linearized alternating direction method with
adaptive penalty (LADMAP) method (Lin, Liu, & Su, 2011). Experi-
ments on three widely used face data sets and one voice data set
to evaluate the performance of MLRR are illustrated in Section 4.
Section 5 concludes the paper.

2. Related work

In this section, we review the following three parts: LRR model
as well as its several variants, the LADMAP method (Lin et al., 2011)
which is often employed to implement the LRR model, and the
semi-supervised classification framework used in this paper.

2.1. Low-rank representation and its several variants

Let X = [Xq,Xa,...,Xn] € R be a set of n samples in the
d-dimensional space. Low-rank representations aim at represent-
ing each sample by a linear combination of the bases in A = [a;,
ay,...,an] € R™MasX = AZ, where Z = (24,25, ..., Z,] is the
matrix with each z; being the representation coefficient of sample
X;. Each element in z; can be seen as the contribution to the re-
construction of X; with A as the basis. LRR seeks the lowest-rank
solution by solving the following optimization problem (Liu et al.,
2010)

mZin rank(Z), s.t.X=AZ. (1)

Due to the NP-hard nature of the rank function, the above optimiza-
tion problem can be relaxed to the following convex optimization
problem (Candes, Li, Ma and Wright, 2011)

mzin |Z||s, s.t.X=AZ, (2)

where || -] denotes the trace norm of a matrix (Cai, Candés, & Shen,
2010), i.e., the sum of its singular values. Considering the fact that
samples are usually noisy or even grossly corrupted, a more rea-
sonable objective for LRR can be expressed as

min |IZ]l + A|[Ell2.1, s.t. X =AZ+E, (3)

where the £, 1-norm is defined as [|E|l2,; = Y., JL e and
parameter A is used to balance the effect of low-rank term and er-
ror term. Some existing studies also used the £;-norm to measure
the error term (Liu & Yan, 2012; Okutomi, Yan, Sugimoto, Liu and
Zheng, 2012; Peng, Wang, Wang, & Lu, 2013) while the £, ;-norm
is used in this paper. The optimal solution Z* to problem (3) can
be obtained via the inexact augmented Lagrange multiplier (ALM)
method (Lin, Chen, & Ma, 2010).

As described in Liu et al. (2010), LRR jointly obtains the
representation of all the data under a global low-rank constraint,
and thus is good at capturing the global structure. Moreover, since
each sample can be used to represent itself, there always exist
feasible solutions even when the data sampling is insufficient,
which is different from sparse representation. These properties
make LRR-graph a good candidate for various learning tasks. Below
are several recently proposed LRR variants for graph based SSL.
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