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a b s t r a c t

We derive in this paper a new Local Rademacher Complexity risk bound on the generalization ability of a
model, which is able to take advantage of the availability of unlabeled samples. Moreover, this new bound
improves state-of-the-art results even when no unlabeled samples are available.
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1. Introduction

A learning process can be described as the selection of a hy-
pothesis in a fixed set, based on empirical observations (Vapnik,
1998). Its asymptotic analysis, through a bound on the generaliza-
tion error, has been thoroughly investigated in the past (Talagrand,
1987; Vapnik, 1998). However, as the number of samples is lim-
ited in practice, finite sample analysis with global measures of the
complexity of the hypothesis set was proposed, and represented a
fundamental advance in the field (Bartlett & Mendelson, 2003;
Bousquet & Elisseeff, 2002; Koltchinskii, 2006; McAllester & Ak-
inbiyi, 2013; Valiant, 2013; Vapnik, 1998). A further refinement
has consisted in exploiting local measures of complexity, which
take in account only thosemodels that well approximate the avail-
able data (Bartlett, Bousquet, & Mendelson, 2002, 2005; Blanchard
& Massart, 2006; Koltchinskii, 2006; Lever, Laviolette, & Shawe-
Taylor, 2013). Recently, some attempts to further improve these
results have been made (Audibert & Tsybakov, 2007; Srebro, Srid-
haran, & Tewari, 2010; Steinwart & Scovel, 2007): unfortunately,
these approaches require additional assumptions that, in general,
are not satisfied or cannot be justified by inferring them from
the data. Alternative paths have been explored like, for example,
exploiting additional a-priori information (Parrado-Hernández,
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Ambroladze, Shawe-Taylor, & Sun, 2012). Recently, the use of
unlabeled samples has been proposed for improving the tightness
of Global Rademacher Complexity based bounds (Anguita, Ghio,
Oneto, & Ridella, 2011). Such results are appealing since unlabeled
samples are commonly available in many real world applications,
as also confirmed by the success of learning procedures able to ex-
ploit them (Chapelle, Schölkopf, & Zien, 2006).

In this paper, we extend the recent results on the use of un-
labeled samples in global complexity measures to the case of local
ones and derive sharper Local Rademacher Complexity risk bounds
on the generalization ability of amodel. For this purpose, two steps
are completed. First, we propose a proof for the Local Rademacher
Complexity bound, simplified with respect to the milestone result
of (Bartlett et al., 2005) through the exploitation of thewell-known
bounded difference inequality (McDiarmid, 1989). Such simplifi-
cation enables us to apply results on concentration inequalities of
self-bounding functions (Boucheron, Lugosi, & Massart, 2013), and
to obtain a sharper Local Rademacher Complexity risk bound. The
latter improves the state-of-the-art results both when unlabeled
samples are used and the dataset is entirely composed of labeled
samples.

2. The learning framework

Weconsider the conventional learning problem (Vapnik, 1998):
based on a random observation of X ∈ X, one has to estimate
Y ∈ Y by choosing a suitable hypothesis h : X → Ŷ, where h ∈ H .
A learning algorithm selects h by exploiting a set of labeled samples
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independent samples distributed according to µ over X × Y. The
generalization error

L(h) = Eµℓ(h(X), Y ), (1)

associated to a hypothesis H , is defined through a loss function
ℓ(h(X), Y ) : Ŷ × Y → [0, 1]. As µ is unknown, L(h) cannot
be explicitly computed, thus we have to resort to its empirical
estimator, namely the empirical error
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Note that L̂nl(h) is a biased estimator, since the data used for select-
ing the model and for computing the empirical error coincide. We
estimate this bias by studying the discrepancy between the gen-
eralization error and the empirical error. For this purpose we ex-
ploit powerful statistical tools like concentration inequalities and
the Local Rademacher Complexity.

2.1. Definitions

In the seminal work of Bartlett et al. (2005), a bound, defined
over the space of functions, is provided. In this work, we general-
ize this result to a more general supervised learning framework.
For this purpose, we switch from the space of functions H to the
space of loss functions.

Definition 2.1. Given a space of functions H with its associated
loss function ℓ(h(X), Y ), the space of loss functions L is defined
as:

L =


ℓ(h(X), Y )

h ∈ H

. (3)

Let us also consider the corresponding star-shaped space of
function.

Definition 2.2. Given the space of loss functionsL, its star-shaped
version is:

Ls
=
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. (4)

Then, the generalization error and the empirical error can be
rewritten in terms of the space of loss functions:

L(h) ≡ L(ℓ) = Eµℓ(h(X), Y ), (5)

L̂nl(h) ≡ L̂nl(ℓ) =
1
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Moreover we can define, respectively, the expected square error
and the empirical square error:

L(ℓ2) = Eµ [ℓ(h(X), Y )]2 , (7)

L̂nl(ℓ
2) =
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Consequently, the variance of ℓ ∈ L can be defined as:

V 2(ℓ) = Eµ [ℓ(h(X), Y )− L(ℓ)]2 = L(ℓ2)− [L(ℓ)]2. (9)

Note that the following relations hold:

V 2(ℓ) ≤ L(ℓ2) ≤ L(ℓ), L[(αℓ)2] = α2L(ℓ2). (10)

Since we do not know in advance which h ∈ H will be chosen dur-
ing the learning phase, in order to estimate L(ℓ) we have to study
the behavior of the difference between the generalization error and
the empirical error.

Definition 2.3. Given L, the Uniform Deviation of the loss Ûnl(L)

and square loss Û2
nl(L) are:
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while their deterministic counterparts are:

Unl(L) = EµÛnl(L), U2
nl(L) = EµÛ2

nl(L). (12)

The Uniform Deviation is not computable, but we can upper
bound its value through some computable quantity. One possibil-
ity is to use the Rademacher Complexity.

Definition 2.4. The Rademacher Complexity of the loss and of the
square loss are:

R̂nl(L) = Eσ sup
ℓ∈L
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where σ1, . . . , σnl are nl {±1}-valued independent Rademacher
random variables for which P(σi = +1) = P(σi = −1) = 1/2.
Their deterministic counterparts are:

Rnl(L) = EµR̂nl(L), R2
nl(L) = EµR̂2

nl(L). (15)

In Appendix A, some propaedeutic properties of the Uniform
Deviation and Rademacher Complexity are recalled, which will be
useful for deriving the main results of this work.

Finally, wewill alsomake use of the notion of sub-root function
(Bartlett et al., 2005).

Definition 2.5. A function is a sub-root function if and only if:

(I) ψ(r) is positive,
(II) ψ(r) is non-decreasing,
(III) ψ(r)/√r is non-increasing,

with r > 0.

Its properties are reported in Appendix B.

3. Local Rademacher complexity error bound

In this section, we propose a proof of the Local Rademacher
Complexity bound on the generalization error of a model (Bartlett
et al., 2005; Koltchinskii, 2006), which is simplified with respect to
the original proof in literature and allows us also to obtain optimal
constants.

In order to improve the readability of the paper, an outline of
themain steps of the proof is presented. As a first step, Theorem3.1
shows that it is possible to bound the generalization error of a func-
tion chosen in H , through an assumption over the Expected Uni-
form Deviation of a normalized and slightly enlarged version (see
Lemma 3.2) of H . As a second step, Theorem 3.3 shows how to re-
late the ExpectedUniformDeviation and the ExpectedRademacher
Complexity through the use of a sub-root function. The fixed point
of this sub-root function is used to bound the generalization er-
ror of a function chosen in H . As a third step, Lemma 3.4 shows
that, instead of using any sub-root function, we can directly use
the Expected Rademacher Complexity of a local space of functions,



Download	English	Version:

https://daneshyari.com/en/article/6863291

Download	Persian	Version:

https://daneshyari.com/article/6863291

Daneshyari.com

https://daneshyari.com/en/article/6863291
https://daneshyari.com/article/6863291
https://daneshyari.com/

