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a b s t r a c t

This paper investigates the problem of exponential synchronization of time-varying delayed neural net-
works with discontinuous neuron activations. Under the extended Filippov differential inclusion frame-
work, by designing discontinuous state-feedback controller and using some analytic techniques, new
testable algebraic criteria are obtained to realize two different kinds of global exponential synchroniza-
tion of the drive–response system. Moreover, we give the estimated rate of exponential synchronization
which depends on the delays and system parameters. The obtained results extend some previous works
on synchronization of delayed neural networks not only with continuous activations but also with dis-
continuous activations. Finally, numerical examples are provided to show the correctness of our analysis
via computer simulations. Our method and theoretical results have a leading significance in the design of
synchronized neural network circuits involving discontinuous factors and time-varying delays.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As far as we know, the non-Lipschitz or discontinuous neuron
activations widely exist in many practical neural networks. Usu-
ally, the discontinuities of activations are caused by some inter-
esting engineering tasks such as switching in electronic circuits,
dry friction, systems oscillating under the effect of an earthquake
and so on (see Cortés, 2008, Filippov, 1988, Forti & Nistri, 2003,
Liu, Chen, Cao, & Lu, 2011 and Luo, 2009). Unfortunately, the addi-
tional difficulties will arise if discontinuities of activation are con-
sidered in the neural network dynamical systems. Actually, this
kind of dynamical neuron system is usually described by the differ-
ential equation system possessing discontinuous right-hand side.
It should be pointed out that many results in the classical theory of
differential equation have been shown to be invalid since the given
vector field is no longer continuous. In this case, the continuously
differentiable solution is not guaranteed for the discontinuous neu-
ron system. Moreover, it is necessary to reveal what changes will
occur for different dynamic behaviors when discontinuous activa-
tions are introduced into the neural networks. In order to overcome
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these difficulties, Forti et al. first introduced the theory of differ-
ential inclusion given by Filippov to investigate the dynamical be-
haviors of neural networks with discontinuous activations (Forti &
Nistri, 2003). Since then, neural networks with discontinuous ac-
tivations have received a great deal of attention. Under the new
framework named Filippov differential inclusion framework (Fil-
ippov, 1988), many excellent results on dynamical behaviors have
been obtained for neural networks with discontinuous activations
(Allegretto, Papini, & Forti, 2010; Cai, Huang, Guo, & Chen, 2012;
Forti, Grazzini, Nistri, & Pancioni, 2006; Forti, Nistri, & Papini, 2005;
Huang, Cai, Zhang, & Duan, 2013; Huang, Wang, & Zhou, 2009; Liu
& Cao, 2009; Liu, Cao, & Yu, 2012; Liu et al., 2011; Lu & Chen, 2005,
2008; Papini & Taddei, 2005). However, most of existing papers are
focused on the existence and convergence of equilibrium and peri-
odic solution (or almost periodic solution) for neural networkmod-
els with discontinuous activations. To the best of our knowledge,
there is not much research concerning more complex dynamical
behaviors such as chaos, bifurcation and synchronization for neu-
ron systems with discontinuous activations.

On the other hand, the issues of chaos synchronization have
been extensively studied for a rather long time since the pioneer-
ing work of Pecora and Carroll in 1990 (see Pecora & Carroll, 1990).
It is worth mentioning that synchronization means the dynam-
ics of nodes share the same time-spatial property and can be in-
duced by coupling or by external forces. In fact, synchronization
is a typical collective behavior which can be found in a wide va-
riety of research fields such as biological systems, meteorology
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and secure communications (see Collins & Stewart, 1993, Duane,
Webster, & Weiss, 1999, Liao & Huang, 1999 and Mirollo, Stro-
gatz, & Williams, 1990). There are many types of synchronization
including complete synchronization, anti-synchronization, phase
synchronization, etc. Nowadays, chaos synchronization of neural
networks has become a hot research topic owing to its theoreti-
cal significance (see, for example, Cao, Wang, & Sun, 2007, Hop-
pensteadt & Izhikevich, 2000, Lu, Ho, &Wang, 2009 and Yang, Cao,
Long, & Rui, 2010). Recently, the interest of synchronization prob-
lem is shifting to the networks with discontinuous neuron activa-
tions despite the fact that the synchronization is not easy to be
realized because of the discontinuous vector field. In Liu and Cao
(2010), the complete synchronization was considered for the de-
layed neural networks with discontinuous activation functions via
approximation approach. In Liu, Cao et al. (2012) and Liu et al.
(2011), the quasi-synchronization criteria were obtained for dis-
continuous or switched networks. That is to say, the synchroniza-
tion error can only be controlledwithin a small region around zero,
but cannot approach zero with time. In Yang and Cao (2013), the
authors investigated the exponential synchronization of delayed
neural networks with discontinuous activations by constructing
suitable Lyapunov functionals. Also, Liu et al. got some sufficient
conditions on synchronization of linearly coupled dynamical neu-
ron systems with non-Lipschitz right-hand sides (Liu, Lu, & Chen,
2012). But the synchronization criteria were expressed in integral
inequalities and the discontinuous functions were weakened to be
weak-QUAD or semi-QUAD. It should be noted that such synchro-
nization criteria may be not easily verified in practice and there
still lack newandefficaciousmethods for realizing synchronization
control of discontinuous neural networks. Moreover, the new con-
troller for synchronization should be designed. In addition, inmany
practical applications of neural networks, time delays between
neuron signals are typical phenomena due to internal or exter-
nal uncertainties. Because of the finite speed of signal propagation
and the finite switch speed of neuron amplifiers, the time-delays in
neurons are usually time variant and sometimes vary dramatically
with time (Hou&Qian, 1998;Huang,Ho, & Lam, 2005). Therefore, it
is necessary for us to investigate the synchronization problems for
time-varying delayed dynamical neuron systems with discontinu-
ous activations via the Filippov differential inclusion framework.
Notations: Let R be the set of real numbers and Rn denote the
n-dimensional Euclidean space. Given the column vectors x =

(x1, x2, . . . , xn)T ∈ Rn and y = (y1, y2, . . . , yn)T ∈ Rn, where
the superscript T denotes the transpose operator, ⟨x, y⟩ = xTy =n

i=1 xiyi represents the scalar product of x, y, while ∥x∥ denotes
any vector norm in Rn. Given a set E ⊂ Rn, by meas(E) we mean
the Lebesgue measure of set E in Rn and co[E] denotes the closure
of the convex hull of E. If z ∈ Rn and δ > 0, B(z, δ) = {z∗

∈ Rn
:

∥z∗
− z∥ ≤ δ} denotes the ball of δ about z. Given the function

V : Rn
→ R, ∂V denotes Clarke’s generalized gradient of V .

The remainder of this paper is outlined as follows. In Section 2,
the model description and preliminaries including some neces-
sary definitions and lemmas are stated. In Section 3, the main re-
sults and their rigorous proofs are given. Some new exponential
synchronization criteria for time-varying delayed neural networks
with discontinuous activations are proposed via introducing dis-
continuous state-feedback controller. In Section 4, two numerical
examples are provided to illustrate the theoretical results. Finally,
some conclusions are drawn in Section 5.

2. Model description and preliminaries

In this paper, we consider the time-varying delayed neural
networks described by the following differential equations:

dxi(t)
dt

= −cixi(t)+

n
j=1

aijfj(xj(t − τ(t)))+ Ii,

i = 1, 2, . . . , n, (1)

where xi(t) denotes the state variable of the potential of the ith
neuron at time t; ci > 0 denotes the self-inhibition with which
the ith neuron will reset its potential to the resting state in isola-
tions when disconnected from the network; aij represents the con-
nection strength of jth neuron on the ith neuron; fj(·) denotes the
activation function of jth neuron; Ii is the external input to the ith
neuron; τ(t) denotes the time-varying transmission delay at time
t and is a continuous function satisfying
0 ≤ τ(t) ≤ τ (here τ is a nonnegative constant).
Throughout this paper, the discontinuous neuron activations in (1)
are assumed to satisfy the following properties:
(H1) For each i = 1, 2, . . . , n, fi : R → R is continuous except

on a countable set of isolate points {ρ i
k}, where there exist

finite right and left limits, f +

i (ρ
i
k) and f −

i (ρ
i
k), respectively.

Moreover, fi has at most a finite number of discontinuities on
any compact interval of R.

(H2) For every i = 1, 2, . . . , n, there exist nonnegative constants
Li and pi such that

sup
ξi∈co[fi(u)],ηi∈co[fi(v)]

|ξi − ηi| ≤ Li|u − v| + pi,

∀u, v ∈ R, (∗)

where

co[fi(θ)] =

min{f −

i (θ), f
+

i (θ)}, max{f −

i (θ), f
+

i (θ)}


for θ ∈ R.

Remark 1. In general, the constant pi in the condition (H2) should
not equal to zero due to the discontinuity of the function fi. There-
fore, there exists essential difference between the condition (H2)
and the Lipschitz condition in the previous literature. Especially,
if the discontinuous function fi satisfies the condition (H1) and is
monotonically non-decreasing, then the following condition (H3)
is satisfied.
(H3) For every i = 1, 2, . . . , n, there exist nonnegative constants

Li and pi such that

sup
ξi∈co[fi(u)],ηi∈co[fi(v)]

(u − v)(ξi − ηi)

≤ Li(u − v)2 + pi|u − v|, ∀u, v ∈ R,

where

co[fi(θ)] =

min{f −

i (θ), f
+

i (θ)},max{f −

i (θ), f
+

i (θ)}


for θ ∈ R.

Actually, if fi satisfies the condition (H1) and is monotonically non-
decreasing, then for ∀ξi ∈ co[fi(u)], ηi ∈ co[fi(v)], we have (u− v)
(ξi − ηi) ≥ 0 which implies |u − v| |ξi − ηi| = (u − v)(ξi − ηi).
Multiplying both sides of the inequality (∗) by |u − v|, we obtain

sup
ξi∈co[fi(u)],ηi∈co[fi(v)]

|u − v| |ξi − ηi| ≤ Li|u − v|2 + pi|u − v|,

∀u, v ∈ R.

That is to say, the condition (H3) holds. So the condition (H3) is a
special case of (H2). For example, there are two classes of different
situations illustrated in Fig. 1 when the discontinuous activation
function fi(θ) is discontinuous at θ = 0 and satisfies (H2) and (H3),
respectively. Here, wemight as well take the two different cases of
the discontinuous activation function fi(θ) as follows:

Case (a) : fi(θ) =


tanh(θ)− 1, if θ ≥ 0,
tanh(θ)+ 1, if θ < 0.

Case (b) : fi(θ) =


θ + 1, if θ ≥ 0,
θ − 1, if θ < 0.

Since neural network (1) is a delayed differential equation
system possessing discontinuous right-hand side, the existence
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