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Convolutional Neural Networks (CNNs) are an alternative type of neural network that can be used to
reduce spectral variations and model spectral correlations which exist in signals. Since speech signals
exhibit both of these properties, we hypothesize that CNNs are a more effective model for speech
compared to Deep Neural Networks (DNNs). In this paper, we explore applying CNNs to large vocabulary
continuous speech recognition (LVCSR) tasks. First, we determine the appropriate architecture to make
CNNs effective compared to DNNs for LVCSR tasks. Specifically, we focus on how many convolutional
layers are needed, what is an appropriate number of hidden units, what is the best pooling strategy.
Second, investigate how to incorporate speaker-adapted features, which cannot directly be modeled by
CNNs as they do not obey locality in frequency, into the CNN framework. Third, given the importance
of sequence training for speech tasks, we introduce a strategy to use ReLU+dropout during Hessian-free
sequence training of CNNs. Experiments on 3 LVCSR tasks indicate that a CNN with the proposed speaker-
adapted and ReLU+dropout ideas allow for a 12%-14% relative improvement in WER over a strong DNN
system, achieving state-of-the art results in these 3 tasks.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, Deep Neural Networks (DNNs) have achieved tremen-
dous success in acoustic modeling for large vocabulary continuous
speech recognition (LVCSR) tasks, showing significant gains over
state-of-the-art Gaussian Mixture Model/Hidden Markov Model
(GMM/HMM) systems on a wide variety of small and large vocab-
ulary tasks (Dahl, Yu, Deng, & Acero, 2012; Hinton, Deng, Yu, Dahl,
Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, & Kings-
bury, 2012; Jaitly, Nguyen, Senior, & Vanhoucke, 2012; Kingsbury,
Sainath, & Soltau, 2012; Seide, Li, & Yu, 2011). Convolutional Neu-
ral Networks (CNNs) (LeCun & Bengio, 1995; Lecun, Bottou, Bengio,
& Haffner, 1998) are an alternative type of neural network that can
be used to model spatial and temporal correlation, while reducing
translational variance in signals.

CNNs are attractive compared to fully-connected DNNs for a va-
riety of reasons. First, DNNs ignore input topology, as the input
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can be presented in any (fixed) order without affecting the per-
formance of the network (LeCun & Bengio, 1995). However, spec-
tral representations of speech have strong correlations in time and
frequency, and modeling local correlations with CNNs, through
weights which are shared across local regions of the input space,
has been shown to be beneficial in other fields (LeCun, Huang, &
Bottou, 2004). Second, DNNs are not explicitly designed to model
translational variance within speech signals, which can exist due
to different speaking styles (LeCun & Bengio, 1995). More specif-
ically, different speaking styles lead to formants being shifted in
the frequency domain, as well as variations in phoneme dura-
tions. These speaking styles require us to apply various speaker
adaptation techniques to reduce feature variation. While DNNs of
sufficient size could indeed capture translational invariance, this
requires large networks with lots of training examples. CNNs on
the other hand capture translational invariance with far fewer pa-
rameters by averaging the outputs of hidden units in different local
time and frequency regions.

In fact, CNNs have been heavily explored in the image recogni-
tion and computer vision fields, offering improvements over DNNs
on many tasks (Lawrence, 1997; LeCun et al.,, 2004). Recently,
CNNs have been explored for speech recognition (Abdel-Hamid,
Mohamed, Jiang, & Penn, 2012), also showing improvements
over DNNs, however on a small vocabulary tasks with shallow
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Fig. 1. Diagram showing a typical convolutional network architecture consisting of a convolutional and max-pooling layer. In this diagram, weights with the same line style
are shared across all convolutional layer bands. Note this figure shows non-overlapping pooling, which is different than Abdel-Hamid et al. (2012).

networks. Specifically, Abdel-Hamid et al. (2012) introduced a
novel framework to model spectral correlations where convo-
lutional weights were shared over limited frequency regions, a
technique known as limited weight sharing (LWS). One of the lim-
itations of this LWS approach was that the network was limited to
one convolutional layer, unlike most CNN work which uses mul-
tiple convolutional layers (LeCun et al., 2004). In this paper, we
explore a spatial modeling approach similar to work done in the
image recognition community, where convolutional weights are
fully shared across all time and frequency components. This model-
ing approach, known as full weight sharing (FWS), allows for mul-
tiple convolutional layers and encourages deeper networks.

The first part of this paper explores the appropriate architecture
for CNNs on LVCSR tasks. Specifically, we investigate how many
convolutional vs. fully connected layers are needed, the filter size
per convolutional layer, an appropriate number of hidden units per
layer and a good pooling strategy. In addition, we compare the LWS
proposed in Abdel-Hamid et al. (2012) to our FWS strategy.

The second part of this paper explores the best type of input fea-
ture to be used with CNN. Various speaker adaptation techniques
have been shown to improve the performance of speech recogni-
tion systems. In this paper, we focus on how to incorporate feature-
space maximum likelihood linear regression (fMLLR) (Gales, 1998)
and identity vectors (i-vectors) (Saon, Soltau, Picheny, & Nahamoo,
2013), which do not exhibit locality in frequency, into the CNN
framework through a joint CNN/DNN architecture (Sainath, Kings-
bury, Mohamed, Dahl, Saon, Soltau, Beran, Aravkin, & Ramabhad-
ran, 2013).

Finally, we investigate the role of rectified linear units (ReLU)
and dropout (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhut-
dinov, 2012) for Hessian-free (HF) sequence training (Kingsbury
et al., 2012) of CNNs. In Dahl, Sainath, and Hinton (2013), ReLU+
dropout was shown to give good performance for cross-entropy
(CE) trained DNNs but was not employed during HF sequence-
training. However, sequence-training is critical for speech recogni-
tion performance, providing an additional relative gain of 10%-15%
over a CE-trained DNN (Kingsbury et al., 2012). During CE training,
the dropout mask changes for each utterance. However, during HF
training, we are not guaranteed to get conjugate directions if the
dropout mask changes for each utterance. Therefore, in order to
make dropout usable during HF, we keep the dropout mask fixed
per utterance for all iterations of conjugate gradient (CG) within a
single HF iteration.

After analyzing the best CNN architecture, input feature set
and ReLU, we then explore using CNNs on a 50 hr English Broad-
cast News (BN) task (Kingsbury, 2009). Naturally, our best DNN
system offers a 13% relative improvement over the GMM/HMM,
consistent with gains observed in the literature with DNNs vs.
GMM/HMMs (Kingsbury et al., 2012). Comparing DNNs to CNNs,
we find that a CNN hybrid system offers a 3% relative improve-
ment over the hybrid DNN, whereas the joint CNN/DNN system

which incorporates speaker adaptation and ReLU+dropout offers
an 14% improvement. Finally, we explore the behavior of the joint
CNN/DNN and ReLU+dropout on two larger scale tasks — namely
a 300 hr Switchboard (SWB) task and a 400 hr BN task. We find
that using the CNN with these improvements, we can obtain a 12%
relative improvement over the DNN on SWB and a 16% relative im-
provement over the DNN on 400 hr BN.

The rest of this paper is organized as follows. The basic CNN
architecture used in this paper is described in Section 2. An ex-
ploration of various weight-sharing and pooling strategies are
discussed in Section 3, while input feature analysis is discussed
in Section 4. Using ReLU+dropout for HF sequence training is dis-
cussed in Section 5. Results on three LVCSR tasks are presented in
Section 6, Finally, Section 7 concludes the paper and discusses fu-
ture work.

2. Basic CNN architecture

In this section, we describe the basic CNNs architecture and
experimental setup used in this paper.

2.1. CNN description

A typical convolutional network architecture is shown in Fig. 1.
First, we are given an input signal V. %"/, where t and f are
the input feature dimension in time and frequency respectively. A
weight matrix W € %<1 is convolved with the full input V. The
weight matrix spans across a small local time-frequency patch of
sizemxr,wherem <= tandr <= f.This weight sharing helps to
model local correlations in the input signal. The weight matrix has
n hidden units (i.e., feature maps). Thus, overall the convolutional
operation produces n feature maps of size (t — m) x (f —r).

After performing convolution, a max-pooling layer helps to
remove variability in the time-frequency space that exist due to
speaking styles, channel distortions, etc. Given a pooling size of
p X g, pooling performs a subsampling operation to reduce the
time-frequency space to be {="-t1? w

Most CNN work in image recognition has the lower network
layers be convolutional, while the higher network layers are fully
connected. One goal of this paper is to determine an appropriate
CNN architecture for speech tasks, including the number of
convolutional vs. fully connected layers, hidden units and pooling
strategy.

2.2. Experimental details

2.2.1. Data

We perform preliminary experiments to learn the behavior
of CNNs for speech on a smaller task. Specifically, the acoustic
models are trained on 50 h of data from the 1996 and 1997
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