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a b s t r a c t

This work addresses the use of deep neural networks (DNNs) in automatic language identification (LID)
focused on short test utterances. Motivated by their recent success in acoustic modelling for speech
recognition, we adapt DNNs to the problem of identifying the language in a given utterance from the
short-term acoustic features. We show how DNNs are particularly suitable to perform LID in real-time
applications, due to their capacity to emit a language identification posterior at each new frame of the test
utterance. We then analyse different aspects of the system, such as the amount of required training data,
the number of hidden layers, the relevance of contextual information and the effect of the test utterance
duration. Finally, we propose several methods to combine frame-by-frame posteriors. Experiments are
conducted on two different datasets: the public NIST Language Recognition Evaluation 2009 (3 s task)
and a much larger corpus (of 5 million utterances) known as Google 5M LID, obtained from different
Google Services. Reported results show relative improvements of DNNs versus the i-vector system of 40%
in LRE09 3 second task and 76% in Google 5M LID.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic language identification (LID) refers to the process of
automatically determining the language in a given speech sam-
ple (Muthusamy, Barnard, & Cole, 1994). The need for reliable LID
is continuously growing due to several factors. Among them, the
technological trend towards increased human interaction using
hands-free, voice-operated devices and the need to facilitate the
coexistence of a multiplicity of different languages in an increas-
ingly globalized world.

In general, language discriminant information is spread across
different structures or levels of the speech signal, ranging from
low-level, short-term acoustic and spectral features to high-level,
long-term features (i.e. phonotactic, prosodic). However, even
though several high-level approaches are used asmeaningful com-
plementary sources of information (Ferrer, Scheffer, & Shriberg,
2010; Martinez, Lleida, Ortega, & Miguel, 2013; Zissman, 1996),
most LID systems still include or rely on acoustic modelling
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(Gonzalez-Dominguez et al., 2010; Torres-Carrasquillo et al.,
2010), mainly due to their better scalability and computational ef-
ficiency.

Indeed, computational cost plays an important role, as LID sys-
tems commonly act as a pre-processing stage for either machine
systems (i.e. multilingual speech processing systems) or human
listeners (i.e. call routing to a proper human operator) (Li, Ma,
& Lee, 2013). Therefore, accurate and efficient behaviour in real-
time applications is often essential, for example, when used for
emergency call routing, where the response time of a fluent na-
tive operator is critical (Ambikairajah, Li,Wang, Yin, & Sethu, 2011;
Muthusamy et al., 1994). In such situations, the use of high-level
speech information may be prohibitive, as it often requires run-
ning one speech/phonetic recognizer per target language (Zissman
&Berkling, 2001). Lightweight LID systems are especially necessary
in caseswhere the application requires an implementation embed-
ded in a portable device.

Driven by recent developments in speaker verification, the cur-
rent state of the art in acoustic LID systems involves using i-vector
front-end features followed by diverse classification mechanisms
that compensate speaker and session variabilities (Brummer et al.,
2012; Li et al., 2013; Sturim et al., 2011). The i-vector is a com-
pact representation (typically from 400 to 600 dimensions) of a
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whole utterance, derived as a point estimate of the latent variables
in a factor analysis model (Dehak, Torres-Carrasquillo, Reynolds,
& Dehak, 2011; Kenny, Oullet, Dehak, Gupta, & Dumouchel, 2008).
However, while proven to be successful in a variety of scenarios,
i-vector-based approaches suffer from twomajor drawbackswhen
coping with real-time applications. First, the i-vector is a point
estimate and its robustness quickly degrades as the amount of
data used to derive it decreases. Note that the smaller the amount
of data, the larger the variance of the posterior probability dis-
tribution of the latent variables, and thus, the larger the i-vector
uncertainty. Second, in real-time applications, most of the costs as-
sociated with i-vector computation occur after completion of the
utterance, which introduces an undesirable latency.

Motivated by the prominence of deep neural networks (DNNs),
which surpass the performance of the previous dominant para-
digm, Gaussian mixture models (GMMs), in diverse and challeng-
ing machine learning applications – including acoustic modelling
(Hinton et al., 2012;Mohamed, Dahl, & Hinton, 2012), visual object
recognition (Ciresan, Meier, Gambardella, & Schmidhuber, 2010),
and many others (Yu & Deng, 2011) – we previously introduced
a successful LID system based on DNNs in Lopez-Moreno et al.
(2014). Unlike previous works on using shallow or convolutional
neural networks for small LID tasks (Cole, Inouye, Muthusamy,
& Gopalakrishnan, 1989; Leena, Srinivasa Rao, & Yegnanarayana,
2005; Montavon, 2009), this was, to the best of our knowledge,
the first time that a DNN scheme was applied at a large scale
for LID and benchmarked against alternative state-of-the-art ap-
proaches. Evaluated using two different datasets—the NIST LRE
2009 (3 s task) and Google 5M LID—this scheme significantly out-
performed several i-vector-based state-of-the-art systems (Lopez-
Moreno et al., 2014).

In the current study, we explore different aspects that affect
DNN performance, with a special focus on very short utterances
and real-time applications.We believe that the DNN-based system
is a suitable candidate for this kind of application, as it could
potentially generate decisions at each processed frame of the test
speech segment, typically every 10 ms. Through this study, we
assess the influence of several factors on the performance, namely:
(a) the amount of required training data, (b) the topology of the
network, (c) the importance of including the temporal context,
and (d) the test utterance duration. We also propose several blind
techniques to combine frame-by-frame posteriors obtained from
the DNN to get identification decisions.

We conduct the experiments using the following LID datasets:
a dataset built from Google data, hereafter, Google 5M LID corpus
and the NIST Language Recognition Evaluation 2009 (LRE’09).
First, by means of the Google 5M LID corpus, we evaluate the
performance in a real application scenario. Second, we check if the
same behaviour is observed in a familiar and standard evaluation
framework for the LID community. In both cases, we focus on short
test utterances (up to 3 s).

The rest of this paper is organized into the following sections.
Section 2 defines a reference system based on i-vectors. The
proposed DNN system is presented in Section 3. The experimental
protocol and datasets are described in Section 4. Next, we examine
the behaviour of our scheme over a range of configuration
parameters in both the task and the neural network topology.
Finally, Sections 6 and 7 are devoted to presenting the conclusions
of the study and potential future work.

2. Baseline system: i-vector

Currently, most acoustic approaches to perform LID rely on
i-vector technology (Dehak, Kenny, Dehak, Dumouchel, & Ouellet,
2011). All such approaches, while sharing i-vectors as a feature
representation, differ in the type of classifier used to perform the

final language identification (Martinez, Plchot, Burget, Glembek,
& Matejka, 2011). In the rest of this section we describe: (a) the
i-vector extraction procedure, (b) the i-vector classifier used in
this study, and (c) the configuration details of our baseline i-vector
system. This system will serve us as the baseline system.

2.1. I-vector extraction

Based on the MAP adaptation approach in a GMM framework
(Reynolds, 1995), utterances in language or speaker recognition
are typically represented by the accumulated zero- and centred
first-order Baum–Welch statistics,N and F , respectively, computed
from aUniversal BackgroundModel (UBM) λ. For the UBMmixture
m ∈ 1, . . . , C , withmean,µm, the corresponding zero- and centred
first-order statistics are aggregated over all frames of the utterance
as

Nm =


t

p(m|ot , λ) (1)

Fm =


t

p(m|ot , λ)(ot − µm), (2)

where p(m|ot , λ) is the Gaussian occupation probability for the
mixture m given the spectral feature observation ot ∈ ℜ

D at
time t .

The total variability model, hereafter TV, can be seen as a clas-
sical FA generative model (Bishop, 2007), with observed vari-
ables given by the supervector (CD × 1) of stacked statistics F =

{F1, F2, . . . , FC }. In the TV model, the vector of hidden variables
w ∈ ℜ

L is known as the utterance i-vector. Observed and hidden
variables are related by the rectangular low rankmatrix T ∈ ℜ

CD×L

N−1F = Tw, (3)

where the zero-order statistics N are represented by a block di-
agonal matrix ∈ ℜ

CD×CD, with C diagonal D × D blocks. The mth
component block is the matrix NmI(D×D). Given the imposed Gaus-
sian distributions of p(w) and p(F |w), it can be seen that the mean
of the posterior p(w|F) is given by

w = (I + T tΣ−1NT )−1T tΣ−1F , (4)

where Σ ∈ ℜ
CD×CD is the diagonal covariance matrix of F . The

TV model is thus a data driven model with parameters {λ, T , Σ}.
Kenny et al. (2008) provides a more detailed explanation of the
derivation of these parameters, using the EM algorithm.

2.2. Classification

Since T constrains all the variabilities (i.e. language, speaker,
session), and it is shared for all the language models/excerpts, the
i-vectors,w, can be seen as a new input feature to classify. Further,
several classifiers—either discriminative (i.e. Logistic Regression)
or generative (i.e. the Gaussian classifier and linear discriminant
analysis)—can be used to perform classification (Martinez et al.,
2011). In this study, we utilized LDA, followed by cosine distance
(LDA_CS), as the classifier.

Even though using a more sophisticated classifier (Lopez-
Moreno et al., 2014) would have resulted in slightly increased
performance, we chose the LDA_CS considering the trade-off
between performance and computational time efficiency. In this
framework, the similarity measure (score) of the two given
i-vectors, w1 and w2, is obtained as

Sw1,w2 =
(Atw1)(Atw2)

√
(Atw1)(Atw1)

√
(Atw2)(Atw2)

(5)

where A is the LDA matrix.
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