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subject. We first give an overview of ELM from the theoretical perspective, including the interpolation
theory, universal approximation capability, and generalization ability. Then we focus on the various
improvements made to ELM which further improve its stability, sparsity and accuracy under general
or specific conditions. Apart from classification and regression, ELM has recently been extended for

g?t)l“zggsl.eaming machine clustering, feature selection, representational learning and many other learning tasks. These newly
Classification emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware
Clustering implementation and parallel computation techniques have substantially sped up the training of ELM,
Feature learning making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency,
Regression simplicity, and impressive generalization performance, ELM have been applied in a variety of domains,

such as biomedical engineering, computer vision, system identification, and control and robotics. In
this review, we try to provide a comprehensive view of these advances in ELM together with its future

perspectives.
© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Feedforward neural networks (FNN) have been well studied
and widely used since the introduction of the well-known back-
propagation (BP) algorithm (Rumelhart, Hinton, & Williams, 1986).
Traditional BP algorithm is essentially a first order gradient method
for parameter optimization, which suffers from slow convergence
and local minimum problem. Researchers have proposed various
ways to improve the efficiency or optimality in training FNN, such
as second order optimization methods (Hagan & Menhaj, 1994;
Wilamowski & Yu, 2010), subset selection methods (Chen, Cowan,
& Grant, 1991; Li, Peng, & Irwin, 2005) or global optimization meth-
ods (Branke, 1995; Yao, 1993). Though leading to faster training
speed or better generalization performance compared to the BP al-
gorithm, most of these methods still cannot guarantee a global op-
timal solution.

Recently, extreme learning machine (ELM) has been proposed
for training single hidden layer feedforward neural networks
(SLFNs). In ELM, the hidden nodes are randomly initiated and then
fixed without iteratively tuning. Actually, the hidden nodes in ELM
are even not required to be neuron alike. The only free parame-
ters need to be learned are the connections (or weights) between
the hidden layer and the output layer. In this way, ELM is for-
mulated as a linear-in-the-parameter model which boils down to
solving a linear system. Compared to traditional FNN learning
methods, ELM is remarkably efficient and tends to reach a global
optimum. Theoretical studies have shown that even with randomly
generated hidden nodes, ELM maintains the universal approxima-
tion capability of SLFNs (Huang & Chen, 2007, 2008; Huang, Chen,
& Siew, 2006). With commonly used activation functions, ELM can
attain the almost optimal generalization bound of traditional FNN
in which all the parameters are learned (Lin, Liu, Fang, & Xu, 2014;
Liu, Lin, Fang, & Xu, 2014). The advantages of ELM in efficiency
and generalization performance over traditional FNN algorithms
have been demonstrated on a wide range of problems from dif-
ferent fields (Huang, Zhou, Ding, & Zhang, 2012; Huang, Zhu, &
Siew, 2006). It is worth noting that ELM is generally much more
efficient than support vector machines (SVMs) (Cortes & Vapnik,
1995), least square support vector machines (LS-SVMs) (Suykens
& Vandewalle, 1999) and other state-of-the-art algorithms. Em-
pirical studies have shown that the generalization ability of ELM
is comparable or even better than that of SVMs and its vari-
ants (Fernandez-Delgado, Cernadas, Barro, Ribeiro, & Neves, 2014;
Huang, Song, Gupta, & Wu, 2014; Huang, Zhou, et al., 2012; Huang,

Zhu, et al., 2006). Detailed comparisons of ELM and SVM can be
found in Huang (2014) and Huang, Zhou, et al. (2012).

During the past decade, theories and applications of ELM have
been extensively studied. From learning efficiency point of view,
the original design objects of ELM have three-folds: least human
invention, high learning accuracy and fast learning speed (as
shown in Fig. 1). Various extensions have been made to the original
ELM model to make it more efficient and suitable for specific
applications. A literature survey on ELM theories and applications
was given by Huang, Wang, and Lan (2011). Since then, research
on ELM has become even more active. From theoretical aspect,
the universal approximation capability of ELM has been further
studied in Huang, Zhou, et al. (2012). The generalization ability of
ELM has been investigated in the framework of statistical learning
theory (Lin et al., 2014; Liu, Gao, & Li, 2012; Liu et al., 2014) and the
initial localized generalization error model (LGEM) (Wang, Shao,
Miao, & Zhai, 2013). Many variants of ELM have been proposed
to meet particular application requirements. For example, in cost
sensitive learning, the test time should be minimized, which
requires a compact network to meet test time budget. To this end,
ELM has been successfully adapted to achieve high compactness
in network size (Bai, Huang, Wang, Wang, & Westover, 2014;
Deng, Li, & Irwin, 2011; Du, Li, Irwin, & Deng, 2013; He, Du,
Wang, Zhuang, & Shi, 2011; Lahoz, Lacruz, & Mateo, 2013; Li,
Li & Rong, 2013; Martinez-Martinez et al., 2011; Wang, Er, &
Han, 2014a; Yang, Wang, & Yuan, 2013, 2012; Yu & Deng, 2012).
We also witness the extensions of ELM for online sequential
data (Lan, Soh, & Huang, 2009; Liang, Huang, Saratchandran, &
Sundararajan, 2006; Rong, Huang, Sundararajan, & Saratchandran,
2009; Ye, Squartini, & Piazza, 2013; Zhao, Wang, & Park, 2012),
noisy/missing data (Horata, Chiewchanwattana, & Sunat, 2013;
Man, Lee, Wang, Cao, & Miao, 2011; Miche et al., 2010; Yu, Miche,
et al,, 2013), imbalanced data (Horata et al., 2013; Huang et al.,
2014; Zong, Huang, & Chen, 2013), etc. Additionally, apart from
being used for traditional classification and regression tasks, ELM
has recently been extended for clustering, feature selection and
representational learning (Benoit, van Heeswijk, Miche, Verleysen,
& Lendasse, 2013; Huang et al., 2014; Kasun, Zhou, & Huang, 2013).
In this review, we provide a snapshot assessment of these new
developments in the ELM theories and applications.

It is worth noting that the ELM learning frameworks’ random-
ized strategies for nonlinear feature construction have drawn great
interests in the computational intelligence and machine learn-
ing community (Le, Sarlos, & Smola, 2013; Rahimi & Recht, 2007,
2008a, 2008b; Saxe et al., 2011; Widrow, Greenblatt, Kim, & Park,
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