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h i g h l i g h t s

• A novel supervised nonnegative matrix factorization method is proposed.
• Within-class and between-class pairs are defined by class labels.
• The maximum within-class distance is minimized in NMF space.
• The minimum between-class distance is maximized in NMF space.
• Experiment results show its outperformance over other supervised NMF methods.
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a b s t r a c t

NonnegativeMatrix Factorization (NMF) has been a popular representationmethod for pattern classifica-
tion problems. It tries to decompose a nonnegativematrix of data samples as the product of a nonnegative
basis matrix and a nonnegative coefficient matrix. The columns of the coefficient matrix can be used as
new representations of these data samples. However, traditional NMF methods ignore class labels of the
data samples. In this paper, we propose a novel supervised NMF algorithm to improve the discrimina-
tive ability of the new representation by using the class labels. Using the class labels, we separate all the
data sample pairs into within-class pairs and between-class pairs. To improve the discriminative ability
of the newNMF representations, we propose tominimize themaximumdistance of thewithin-class pairs
in the new NMF space, and meanwhile to maximize the minimum distance of the between-class pairs.
With this criterion, we construct an objective function and optimize it with regard to basis and coefficient
matrices, and slack variables alternatively, resulting in an iterative algorithm. The proposed algorithm is
evaluated on three pattern classification problems and experiment results show that it outperforms the
state-of-the-art supervised NMF methods.

© 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Nonnegative matrix factorization (NMF) has attracted much
attention from both research and engineering communities (Eches
& Guillaume, 2014; Lin, 2007; Malley, Braban, & Heal, 2014; Seung
& Lee, 2001; Vidar & Alvindia, 2013; Wang, Almasri, & Gao, 2012;
Wang, Bensmail, & Gao, 2013; Wang & Gao, 2014; Zheng, Zhang,
Ng, Shiu, & Huang, 2011). Given a data matrix whose elements
are all nonnegative, NMF tries to decompose it as the product of
two nonnegative low-rank matrices. One matrix can be regarded
as a basis matrix with its columns as basis vectors, and the other
one as a linear combination coefficient matrix, so that the original
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data columns in the original matrix could be represented as the
linear combination of the basis vectors. Because of the nonnegative
constrains on both the factorization metrics, it only allows the
additive linear combination, and thus a part-based representation
could be achieved (Agarwal, Awan, & Roth, 2004; Cai, He, Han, &
Huang, 2011;Hwang&Kang, 2013; Lemme, Reinhart, & Steil, 2012;
Zhao, Li, Wu, Fu, & Liu, 2013). Since the original NMF approachwas
proposed by Lee and Seung (1999) and Seung and Lee (2001), due
to its ability to learn the parts of the data set (Li, Hou, Zhang, &
Cheng, 2001), it has been used as an effective data representation
method in various problems, such as pattern recognition (Hoyer,
2004; Liu, Zheng, & You, 2006; Van Hamme, 2012; Zhu, 2008),
computer vision (Guillamet, Vitri, & Schiele, 2003;Monga &Mihak,
2007; Shashua & Hazan, 2005), and bioinformatics (Gao & Church,
2005; Pascual-Montano, 2008; Tian, Liu, & Wu, 2013). The most
popular application of NMF as a data representation tool is in
pattern recognition, where the nonnegative feature vectors of
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the data samples are organized as a nonnegative matrix, and
the columns of the coefficient matrix are used as the new low-
dimensional representations.

In the pattern recognition problems, when NMF is applied on
the data matrix, it is usually assumed that the class labels of the
data samples are not available, making it an unsupervised prob-
lem (Mohammadiha, Smaragdis, & Leijon, 2013; Tsarev, Petrovskiy,
& Mashechkin, 2011). Some typical applications include clustering
of images and documents (Cai et al., 2011; Liu,Wu, Li, Cai, & Huang,
2012). However, in real world supervised or semi-supervised clas-
sification applications, class labels of training data samples are
usually available, which is ignored by most existing NMF meth-
ods. If the class label information could be utilized during the
representation procedure, the discriminative ability of the rep-
resentation could be significantly improved (Gaujoux & Seoighe,
2012; Kitamura et al., 2013; Zhang, Xia, Yang, & Yang, 2007; Zhou
& Schwenker, 2013). To this end, some supervised and semi-
supervised NMF methods were proposed. For example, Wang and
Jia (2004) proposed the Fisher nonnegative matrix factorization
(FNMF) method to encode discrimination information for a clas-
sification problem by imposing Fisher constraints on the NMF al-
gorithm. Lee, Yoo, and Choi (2010) proposed the semi-supervised
nonnegative matrix factorization (SSNMF) by jointly incorporating
the data matrix and the partial class label matrix into NMF. Most
recently, Liu, Wu et al. (2012) proposed the constrained nonnega-
tive matrix factorization (CNMF) by incorporating the label infor-
mation as additional constraints.

In this paper, we propose a novel supervised NMF method, by
exploring the class label information and using it to constrain the
learning of coefficient vectors of the data samples. We consider
pairs of data samples, and the class labels of the samples allow us
to separate the pairs to two types—the within-class pair and the
between-class pair. The within-class pair refers to a pair of sam-
ples with the same class label, while the between-class pair refers
to a pair of samples with different class labels. To improve the dis-
criminate ability of the coefficient vectors of the samples, we con-
sider the distance between the coefficient vectors of each sample
pairs, and try tominimize that of thewithin-class pairs, whilemax-
imize that of the between-class pairs. In this way, the coefficient
vectors of data samples of the same class can be gathered, while
that of different classes can be separated. One problem is how to
assign different weights to different pairs in the objective function.
To avoid this problem, we apply a strategy similar tomax–min dis-
tance analysis (Bian & Tao, 2011). The maximum within-class pair
coefficient vector distance isminimized, so that all thewithin-class
pair coefficient vector distances can be minimized as well. Mean-
while the minimum between-class pair coefficient vector distance
is maximized, so that all the between-class pair coefficient vector
distances can bemaximized aswell.We construct a novel objective
function for NMF to impose both the maximum within-class pair
distance minimization and the minimum between-class pair dis-
tancemaximization problems. By optimizing it with an alternative
strategy, we develop an iterative algorithm. The proposed method
is called Max–Min Distance NMF (MMDNMF).

The remaining parts of this paper are organized as follows: in
Section 2, we introduce the novel NMF method. In Section 3, the
experimental results are given to verify the effectiveness of the
proposed method. The paper is concluded in Section 4.

2. Proposed method

In this section, we first formulate the problemwith an objective
function, and then optimize it to obtain an iterative learning
algorithm.

2.1. Problem formulation

Supposingwe have n data samples in a training setX = {xi}ni=1,
where xi ∈ Rd

+
is the d-dimensional nonnegative feature vector of

the ith sample, we organize the samples as a nonnegative matrix
X = [x1, . . . , xn] ∈ Rd×n

+ . The ith column of the matrix X is the
feature vector of the ith sample. Their corresponding class label
set is denoted as {yi}ni=1, where yi ∈ Y is the class label of the
ith sample, and Y is the class label space. NMF aims to find two
low rank nonnegative matrices U ∈ Rd×m

+ and V ∈ Rm×n
+ , where

m ≤ d, so that the product of them, UV , could approximate the
original matrix, X , as accurately as possible,

X ≈ UV . (1)

The m columns of the matrix U could be regarded as m basis vec-
tors, and each sample xi could be represented as the nonnegative
linear combination of these basis vectors. The linear combination
coefficient vector of xi is the ith column vector vi ∈ Rm

+
of V . We

can also regard vi as a new low-dimensional presentation vector
of xi with regard to the basis matrix U . To seek the optimal matri-
ces U and V , we consider the following problems to construct our
objective function:

• To reduce the approximation error between X and UV , the
squared ℓ2 distance between them is usually minimized with
regard to U and V as follows,

min
U,V
∥X − UV∥22

s.t. U ≥ 0, V ≥ 0.
(2)

• We consider the training sample pairs in the training set, and
separate them to two pair sets—the within-class pair set W and
the between-class pair set B. The within-class pair set is de-
fined as the set of sample pairs belonging to the same class,
i.e., W = {(i, j)|yi = yj, xi, xj ∈ X}. The between-class pair
set is defined as the set of sample pairs belonging to differ-
ent classes, i.e., B = {(i, j)|yi ≠ yj, xi, xj ∈ X}. To compare
the two samples of the (i, j)th pair in the new coefficient vec-
tor space, we use the squared ℓ2 norm distance between their
coefficient vectors, ∥vi − vj∥22. Apparently, to improve the dis-
criminative ability of the newNMF presentation, the coefficient
vector distances of within-class pairs should be minimized,
while those of the between-class pairs should bemaximized. In-
stead of considering all the pairs,we directlyminimize themax-
imum coefficient vector distance of the within-class pairs, as
follows,

min
V


max

(i,j)∈W
∥vi − vj∥22


s.t. V ≥ 0,

(3)

and thus we duly consider the aggregation of all within-class
pairs. Meanwhile, we also maximize the minimum coefficient
vector distance of the between-class pairs, as follows,

max
V


min

(i,j)∈B
∥vi − vj∥22


s.t. V ≥ 0

(4)

and thus we consider the separation of all between-class pairs.
In this way, the maximum within-class pair distance is mini-
mized, so that all the within-class pair distances are also min-
imized. Similarly, the minimum between-class pair distance is
maximized, so that all the between-class pair distances are also
maximized.
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