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a b s t r a c t

In this paper, a one-layer recurrent neural network is proposed for solving nonconvex optimization
problems subject to general inequality constraints, designed based on an exact penalty function method.
It is proved herein that any neuron state of the proposed neural network is convergent to the feasible
region in finite time and stays there thereafter, provided that the penalty parameter is sufficiently large.
The lower bounds of the penalty parameter and convergence time are also estimated. In addition, any
neural state of the proposed neural network is convergent to its equilibrium point set which satisfies
the Karush–Kuhn–Tucker conditions of the optimization problem. Moreover, the equilibrium point set is
equivalent to the optimal solution to the nonconvex optimization problem if the objective function and
constraints satisfy given conditions. Four numerical examples are provided to illustrate the performances
of the proposed neural network.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, the following constrained nonconvex minimiza-
tion problem is considered:

minimize f (x)
subject to gi(x) ≤ 0, i ∈ I = {1, 2, . . . ,m},

(1)

where x ∈ Rn is the decision vector; f and gi, : Rn
→ R (i ∈ I) are

continuously differentiable functions, but not necessarily convex.
The feasible region

F = {x ∈ Rn
: gi(x) ≤ 0, i ∈ I}

is assumed to be a nonempty set. We denote by G the set of global
solutions of problem (1) as,

G = {x ∈ F : f (y) ≥ f (x), ∀ y ∈ F }.
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Many problems in engineering applications can be formulated
as dynamic optimization problems such as kinematic control of
redundant robot manipulators (Wang, Hu, & Jiang, 1999), nonlin-
ear model predictive control (Piche, Sayyar-Rodsari, Johnson, &
Gerules, 2000; Yan & Wang, 2012), hierarchical control of inter-
connected dynamic systems (Hou, Gupta, Nikiforuk, Tan, & Cheng,
2007), compressed sensing in adaptive signal processing (Bal-
avoine, Romberg, & Rozell, 2012), and so on. For example, real-time
motion planning and control of redundant robot manipulators can
be formulated as constrained dynamic optimization problemswith
nonconvex objective functions for simultaneously minimizing
kinetic energy and maximizing manipulability. Similarly, in non-
linear and robust model predictive control, optimal control com-
mands have to be computed with a moving time window by
repetitively solving constrained optimization problems with non-
convex objective functions for error and control variation mini-
mization, and robustness maximization. The difficulty of dynamic
optimization is significantly amplified when the optimal solutions
have to be obtained in real time, especially in the presence of
uncertainty. In such applications, compared with traditional nu-
merical optimization algorithms, neurodynamic optimization ap-
proaches based on recurrent neural networks have several unique
advantages. Recurrent neural networks can be physically imple-
mented in designated hardware/firmware, such as very-large-
scale integration (VLSI) reconfigurable analog chips, optical chips,
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graphic processing units (GPU), field programmable gate array
(FPGA), digit signal processor (DSP), and so on. Recent technolog-
ical advances make the design and implementation of neural net-
works more feasible at a more reasonable cost (Asai, Kanazawa, &
Amemiya, 2003).

Since the pioneering work of Hopfield neural networks (Hop-
field & Tank, 1985; Tank & Hopfield, 1986), neurodynamic opti-
mization has achieved great success in the past three decades. For
example, a deterministic annealing neural network was proposed
for solving convex programming problems (Wang, 1994), a La-
grangian network was developed for solving convex optimization
problems with linear equality constraints based on the Lagrangian
optimality conditions (Xia, 2003), the primal–dual network (Xia,
1996), the dual network (Xia, Feng, &Wang, 2004), and the simpli-
fied dual network (Liu & Wang, 2006) were developed for solving
convex optimization problems based on the Karush–Kuhn–Tucker
optimality conditions, projection neural networks were developed
for constrained optimization problems based on the projection
method (Gao, 2004; Hu & Wang, 2007; Liu, Cao, & Chen, 2010;
Xia, Leung, & Wang, 2002). In recent years, neurodynamic opti-
mization approaches have been extended to nonconvex and gen-
eralized convex optimization problems. For example, a Lagrangian
neural network was proposed for nonsmooth convex optimization
by using the Lagrangian saddle-point theorem (Cheng et al., 2011),
a recurrent neural network with global attractivity was proposed
for solving nonsmooth convex optimization problems (Bian & Xue,
2013), several neural networks were developed for nonsmooth
pseudoconvex or quasiconvex optimization using the Clarke’s gen-
eralized gradient (Guo, Liu, &Wang, 2011; Hosseini, Wang, & Hos-
seini, 2013; Hu&Wang, 2006; Liu, Guo, &Wang, 2012; Liu &Wang,
2013). In addition, various neural networks with finite-time con-
vergence property were developed (Bian & Xue, 2009; Forti, Nistri,
& Quincampoix, 2004, 2006; Xue & Bian, 2008).

Despite the enormous success, neurodynamic optimization ap-
proaches would reach their solvability limits at constrained op-
timization problems with unimodal objective functions and are
important for global optimization with general nonconvex objec-
tive functions. Little progress has been made on nonconvex op-
timization in the neural network community. Instead of seeking
global optimal solutions, a more attainable and meaningful goal
is to design neural networks for searching critical points (e.g.,
Karush–Kuhn–Tucker points) of nonconvex optimization prob-
lems. Xia, Feng, and Wang (2008) proposed a neural network for
solving nonconvex optimization problems with inequality con-
straints, whose equilibrium points correspond to the KKT points.
But the condition that the Hessian matrix of the associated La-
grangian function is positive semidefinite for the global conver-
gence is too strong. In this paper, a one-layer recurrent neural
network based on an exact penalty function method is proposed
for searching KKT points of nonconvex optimization problemswith
inequality constraints. The contribution of this paper can be sum-
marized as follows. (1) State of the proposed neural network is
convergent to the feasible region in finite time and stays there
thereafter, with a sufficiently large penalty parameter; (2) the pro-
posed neural network is convergent to its equilibrium point set;
(3) any equilibrium point x∗ of the proposed neural network cor-
responds to a KKT twofold (x∗, λ∗) of the nonconvex problem and
vice versa; (4) if the objective function and the constraint functions
meet one of the following conditions: (a) the objective function and
the constraint functions are convex; (b) the objective function is
pseudoconvex and the constraint functions are quasiconvex, then
the state of the proposed network converges to the global opti-
mal solution. If the objective function and the constraint functions
are invex with respect to the same kernel, then the state of the
proposed network converges to optimal solution set. Hence, the
results presented in Li, Yan, andWang (2014) can be viewed as spe-
cial cases of this paper.

The remainder of this paper is organized as follows. Section 2
introduces some definitions and preliminary results. Section 3
discusses an exact penalty function. Section 4 presented a neural
network model and analyzed its convergent properties. Section 5
provides simulation results. Finally, Section 6 concludes this
paper.

2. Preliminaries

In this section, we present definitions and properties concern-
ing the set-valued analysis, nonsmooth analysis, and the general-
ized convex function which are needed in the remainder of the
paper. We refer readers to Aubin and Cellina (1984), Cambini and
Martein (2009), Clarke (1969), Filippov (1988) and Pardalos (2008)
for a more thorough research.

Let Rn be real Euclidean space with the scalar product ⟨x, y⟩ =n
i=1 xiyi, x, y ∈ Rn and its related norm ∥x∥ = [

n
i=1 x

2
i ]

1
2 . Let

x ∈ Rn and A ⊂ Rn, dist(x, A) = infy∈A ∥x − y∥ is the distance of x
from A.

Definition 1. F : Rn ↩→ Rn is called a set-valued map, if to each
point x ∈ Rn, there corresponds to a nonempty closed set F(x)
⊂ Rn.

Definition 2. Let F be a set-valued map. F is said to be upper
semicontinuous at x0 ∈ Rn if ∀ ε > 0, ∃ δ > 0 such that ∀x ∈

(x0 + δB), F(x) ⊂ F(x0) + εB, where B = B(0, 1) is the ball
centered at the origin with radius 1. F is upper semicontinuous if
it is so at every x0 ∈ Rn.

A solution x(t) of a differential inclusion is an absolutely
continuous function, the derivative ẋ(t) is only defined almost
everywhere, so that its limit when t → ∞ is not well defined.
The concepts of limit and cluster points to a measurable function
should be defined. Let µ(A) denote the Lebesgue measure of a
measurable subset A ⊂ R.

Definition 3. Let x : [0, ∞) → Rn be a measurable function.
x∗

∈ Rn is the almost limit of x(·) if when t → ∞ ∀ ε > 0, ∃ T > 0
such that

µ

t : ∥x(t) − x∗

∥ > ε, t ∈ [0, ∞)


< ε.

It can be written as x∗
= µ − limt→∞ x(t). x∗ is an almost cluster

point of x(·) if when t → ∞ ∀ ε > 0,

µ

t : ∥x(t) − x∗

∥ ≤ ε, t ∈ [0, ∞)


= ∞.

The followingpropositions show that the usual concepts of limit
and cluster are particular cases of almost limit and almost cluster
point (Aubin & Cellina, 1984).

Proposition 1. The limit x∗ of x : [0, ∞) → Rn is an almost limit
point. If x(·) is uniformly continuous, any cluster point x∗ of x(·) is an
almost cluster point.

Proposition 2. An almost limit x∗ of a measurable function x :

[0, ∞) → Rn is a unique almost cluster point. If x(·) has a unique
almost cluster point x∗ and {x(t) : t ∈ [0, ∞)} is a bounded subset
of Rn, µ − limt→∞ x(t) = x∗.

Proposition 3. Let K be a compact subset of Rn and x : [0, ∞) → K
be ameasurable function, there exists an almost cluster x∗

∈ K of x(·)
when t → ∞.

Definition 4. Function f : Rn
→ R is said to be Lipschitz near x ∈

Rn if there exist positive number k and ε such that |f (x2)− f (x1)| ≤

k∥x2 − x1∥, for all x1, x2 ∈ x + εB. If f is Lipschitz near any point
of its domain, then it is said to be locally Lipschitz.
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