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a b s t r a c t

The cerebellum plays an essential role in adaptive motor control. Once we are able to build a cerebellar
model that runs in realtime, which means that a computer simulation of 1 s in the simulated world
completes within 1 s in the real world, the cerebellar model could be used as a realtime adaptive
neural controller for physical hardware such as humanoid robots. In this paper, we introduce ‘‘Realtime
Cerebellum (RC)’’, a new implementation of our large-scale spiking network model of the cerebellum,
which was originally built to study cerebellar mechanisms for simultaneous gain and timing control
and acted as a general-purpose supervised learning machine of spatiotemporal information known as
reservoir computing, on a graphics processing unit (GPU). Owing to the massive parallel computing
capability of a GPU, RC runs in realtime, while reproducing qualitatively the same simulation results of
the Pavlovian delay eyeblink conditioning with the previous version. RC is adopted as a realtime adaptive
controller of a humanoid robot, which is instructed to learn a proper timing to swing a bat to hit a flying
ball online. These results suggest that RC provides a means to apply the computational power of the
cerebellum as a versatile supervised learning machine towards engineering applications.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The cerebellum plays an essential role in motor learning and
control. In an engineering term, the cerebellum is thought as an
‘‘adaptive control device’’, which observes the status of body parts
by sensors continuously and calibrates the movement online to
achieve fast and smooth motor control. The ability of adaptive
control is unique to living organisms, and is expected its engineer-
ing applications such as humanoid robot control for flexible move-
ments. Several attempts have been made to date. Feedback-error
learning is a system-level approach to adopt the adaptive control
ability for humanoid robots (Kawato & Gomi, 1992; Miyamoto,
Kawato, Setoyama, & Suzuki, 1988; Shibata & Shaal, 2001). In
those studies, a three-layer perceptron with rate-coding neurons
was employed as a model of the cerebellum. Other studies have
built spiking network models, and adopted to control a naviga-
tion robot that avoids hitting at the wall (Hofstötter, Mintz, & Ver-
schure, 2002) and a robot arm with 2 joints to perform reaching
tasks (Carrillo, Ros, Boucheny, & Coenen, 2008). Those models,
however, focus primarily on engineering applications. It remains
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unknown whether they reproduce experimental results of, for ex-
ample, Pavlovian delay eyeblink conditioning and gain adaptation
of vestibulo-ocular reflex. Moreover, for the sake of computational
time, the network size of those models is relatively smaller than
the other cerebellar models which aim to reproduce experimental
results.

On the other hand, we have built a large-scale spiking network
model of the cerebellum, which is composed of more than 100,000
spiking neuron units with realistic parameters. The model has
been demonstrated to reproduce experimental results of Pavlovian
delay eyeblink conditioning (Yamazaki & Tanaka, 2007b) and gain
adaptation of optokinetic response eye movements (Yamazaki &
Nagao, 2012), suggesting that our cerebellar model can learn and
control gain and timing information adaptively. Our cerebellar
model could be adopted to such real-world applications as well,
if the computer simulation is made in real time.

A graphics processing unit (GPU) is hardware designed and
optimized for graphics, video, and visual computing in 2D and
3D (Patterson & Hennessy, 2011). The architecture consists of
two components, one for graphics and the other for numerical
calculation, which turns a GPU into a programmable graphics
processor as well as a scalable parallel computational platform.
CUDA (Compute Unified Device Architecture) (NVIDIA, 2011), a
unified software development environment for GPUs, allows us
to use a GPU as a highly-parallel, multi-threaded multiprocessor.
GPUs have been already employed in the field of computational
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Fig. 1. Network structure of our cerebellar model.

neuroscience (Goodman & Brette, 2009; Igarashi, Shouno, Fukai,
& Tsujino, 2011; Miikkulainen, Bednar, Choe, & Sirosh, 2005;
Nageswaran, Dutt, Krichmar, Nicolau, & Veidenbaum, 2009). A
study demonstrates realtime simulation of a detailed basal ganglia
model for decision making (Igarashi et al., 2011).

In this study, we re-implement our cerebellar model on a GPU,
so as to carry out the computer simulation in real time. Using
some techniques on implementation, the new model, which we
call ‘‘Realtime Cerebellum (RC)’’ can run in real time: a simulation
of 1 s in the simulatedworld completeswithin 1 s in the real world.
We carry out computer simulation of Pavlovian delay eyeblink
conditioning, and confirm that RC reproduces qualitatively the
same results with the previous model. We also adopt RC to
hardware control to demonstrate the power of realtime computing
and delay compensation in sensorimotor loop. We set up a robot
experiment, in which a small humanoid robot is instructed to hit
a flying ball thrown by a pitching machine by swinging a bat at
hand. The robot gradually learns the correct timing by repetition
of practice and finally succeeds to hit the ball.

2. Materials and methods

2.1. Overview of our cerebellar model

RC, the cerebellar model we implemented on a GPU in this
study, is based on our previous models (Yamazaki & Nagao, 2012;
Yamazaki & Tanaka, 2007b). Briefly, RC is composed of 102,400
granule cells, 1024 Golgi cells, 16 Purkinje cells, 16 basket cells,
1 inferior olive and 1 neuron in the cerebellar nucleus (Fig. 1).
External inputs are fed by mossy fibers to granule cells and the
nucleus. Granule cells excite Golgi cells, Purkinje cells and basket
cells. In turn, Golgi cells and basket cells inhibit granule cells and
Purkinje cells, respectively. All the 16 Purkinje cells inhibit the
nuclear cell. Other external inputs are fed by climbing fibers to
Purkinje cells. The final output of the network is generated by
the nucleus. Granule cell–Purkinje cell synapses undergo plastic
change (long-term depression and potentiation).

Neurons are modeled as conductance-based, leaky integrate-
and-fire units.

C
dV (t)
dt

= −gleak(V (t) − Eleak)

− gex:AMPA(t)(V (t) − Eex) − gex:NMDA(t)(V (t) − Eex)

− ginh(t)(V (t) − Einh) − gahp(t − t̂)(V (t) − Eahp), (1)

where V (t) and C are the membrane potential at time t
and the capacitance, respectively. The membrane potential is
determined by five types of currents specified by the right-
hand side of Eq. (1), namely, leak, alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated,

NMDAR-mediated and gamma-aminobutyric acid type A receptor
(GABAAR)-mediated currents, and the current for emulation of
the after-hyperpolarization. For each type c ∈ {leak, ex:AMPA,

ex:NMDA, inh, ahp}, the current at a given time is calculated with
the conductance gc and reversal potential Ec . The conductance is
calculated by the convolution of the alpha function α(t) and the
spike event δj(t) of presynaptic neuron j at time t as follows:

gc(t) =


j

wj

 t

−∞

ḡcα(t − s)δj(s)ds, (2)

where ḡc represents the maximum conductance and wj the
synapticweight from the presynaptic neuron j. The alpha functions
are defined for each current and each neuron type with different
time constants.When themembrane potential of a neuron exceeds
the threshold θ , the neuron is supposed to elicit a spike, followed
by the after-hyperpolarization that determines a refractory period.
The conductance for the after-hyperpolarization is given by

gahp(t − t̂) = exp(−(t − t̂)/τahp), (3)

where τahp represents the time constant of the after-hyper-
polarization and t̂ is the last firing time of the neuron. Detailed
parameters are described in our previous papers (Yamazaki &
Nagao, 2012; Yamazaki & Tanaka, 2007b).

For each connection between two neurons, a constant called a
synaptic weight is assigned; detailed values are shown in our pre-
vious paper (Yamazaki & Nagao, 2012). These synaptic weights do
not change during the whole computer simulation, except those
between parallel fibers (granule cell axons) and Purkinje cells.
When a parallel fiber is solely activated, the weight increases
slightly, whereas when the activation is paired with that of a
climbing fiber, the weight decreases slightly. This bidirectional
change models long-term potentiation (LTP) (Coesmans, Weber,
De Zeeuw, & Hansel, 2004; Lev-Ram, Mehta, Kleinfeld, & Tsien,
2003) and long-term depression (LTD) (Ito, 2001, 2002), respec-
tively. The equation for LTP/LTD is shown in our previous pa-
per (Yamazaki & Nagao, 2012; Yamazaki & Tanaka, 2007b).

We have hypothesized that, the recurrent inhibitory network
composed of granule and Golgi cells generates various temporally-
fluctuating spike patterns among granule cells in response to
mossy fiber signals (Yamazaki & Tanaka, 2005). Because different
granule cells exhibit different temporal patterns, the population of
active granule cells changes gradually in time, indicating that there
is a one-to-one correspondence between a granule-cell population
and a time step from the onset of mossy fiber signals. Therefore,
the temporal evolution of active granule-cell populations can
represent the passage of time from the mossy fiber signal onset.
To study how the spike patterns of granule cells evolve over time,
we define two indices. Let zi(t) be the population average activity
of a granule-cell cluster i, which is defined by a set of nearby
granule cells sharing the same inhibitory inputs from Golgi cells
via glomeruli (see Yamazaki & Nagao, 2012; Yamazaki & Tanaka,
2007b for details):

zi(t) =
1

τPKJ

t
s=0

exp

−(t − s)/τPKJ

  1
Ngranule per cluster


j

δj(s)


, (4)

where δj(s) represents the spike elicited by model granule cell j
in the cluster, Ngranule per cluster is the number of granule cells in a
cluster (namely, 100), and τPKJ is a decay time constant of AMPAR-
mediated EPSPs at Purkinje cells, which was set at 8.3 ms. We
define the autocorrelation of the activity pattern at times t and t+τ
as follows:
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