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a b s t r a c t

Functional aspects of network integration in the cerebellar cortex have been studied experimentally and
modeled in much detail ever since the early work by theoreticians such as Marr, Albus and Braitenberg
more than 40 years ago. In contrast, much less is known about cerebellar processing at the output
stage, namely in the cerebellar nuclei (CN). Here, input from Purkinje cells converges to control CN
neuron spiking via GABAergic inhibition, before the output from the CN reaches cerebellar targets such
as the brainstem and the motor thalamus. In this article we review modeling studies that address how
the CN may integrate cerebellar cortical inputs, and what kind of signals may be transmitted. Specific
hypotheses in the literature contrast rate coding and temporal coding of information in the spiking output
from the CN. One popular hypothesis states that post-inhibitory rebound spiking may be an important
mechanismbywhich Purkinje cell inhibition is turned into CN output spiking, but this hypothesis remains
controversial. Rate coding clearly does take place, but inwhatway itmay be augmented by temporal codes
remains to be more clearly established. Several candidate mechanisms distinct from rebound spiking are
discussed, such as the significance of spike time correlations between Purkinje cell pools to determine
CN spike timing, irregularity of Purkinje cell spiking as a determinant of CN firing rate, and shared brief
pauses between Purkinje cell pools that may trigger individual CN spikes precisely.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many experimental and theoretical studies have addressed the
question how neuronal activity is processed in cerebellar cortex,
but there is still no unified view about the computational role of
the cerebellum as a whole. One of the main reasons for this lack
of understanding of cerebellar function is that we still know very
little about the processing of incoming signals and the generation
of output by the cerebellar nuclei (CN). This is an important
topic, as almost the entire output from the cerebellar cortex
through Purkinje cell (PC) axons ends as GABAergic inhibition in
the CN (Fig. 1), with an additional small specialized component
going to the vestibular nuclei. Thus, cerebellar function cannot
be determined without considering processing at the level of
CN, where inputs from PCs are integrated with signals from
the excitatory mossy fibers and climbing fibers that also drive
cerebellar cortical processing (Fig. 1).

Neural coding can be broadly categorized as rate based, where
the number or rate of spikes in a particular time window is the
carrier of information, or as temporal coding, where information is
represented by the timing of individual spikes or bursts of spikes.
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Both temporal and rate coding have been observed to take place
in the cerebellum and are likely to serve important functions (De
Zeeuw et al., 2011; Walter & Khodakhah, 2009). With respect to
rate coding, linear response mechanisms of CN neurons can sum
the combination of input rates from PCs, which themselves can
exhibit a linear spike rate code of external events such as smooth
eye movements (Medina & Lisberger, 2009). Potentially important
mechanisms serving temporal coding are given by synchronized
PC complex spiking, and by the ability of CN neurons to fire
rebound spike bursts following strong inhibition (De Zeeuw et al.,
2011). In this review, we summarize the existing field of modeling
studies by others and by ourselves that have tried to elucidate
how CN neurons could use different forms of neural coding to
transmit signals from the cerebellar cortex to the rest of the brain.
Moreover, we relate these results to the involvement of the CN in
simple computational tasks, and we discuss computer simulations
of pathological responses in CN neurons that are associated with
motor dysfunction.

2. Simple models of CN neurons and temporal coding

A central question of simulation studies that have included
computationalmodels of CN neurons has been how the cerebellum
could use temporal coding to generate appropriately timed output
signals. A simple behavioral paradigm that requires the generation
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Fig. 1. Cerebellar circuit diagram. The left panel shows a sagittal section of the rat cerebellum at the level of the lateral nucleus. The right panel shows a simplified circuit
diagram of the cerebellum, highlighting the central position of the cerebellar nuclei (CN) in processing cerebellar cortical Purkinje cell inhibition before the final output
leaves the cerebellum.
Source: Diagram adapted from Paxinos and Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, 2006.

of such a well-timed output signal by the cerebellar circuitry is
delay eye-blink conditioning. When an animal is trained during
eye-blink conditioning, a conditioned stimulus (CS, such as a
tone) is paired repeatedly with an unconditioned stimulus (US, for
example periorbital electrical stimulation). In delay conditioning,
the CS and US co-terminate, and the onset of the US follows the CS
onset by an inter-stimulus interval (ISI), which is typically between
100ms and 1 s. The animal then learns to respond to presentations
of the CS alonewith eye-blink conditioned responses (CRs) that are
timed adaptively so that the peak of the CR occurs at the time of the
US presentations during training.

Several lines of evidence indicate an involvement of the CN
in the execution of these timed responses. Electrical stimulation
of the interpositus nucleus can elicit eye-blinks, and interposi-
tus neurons show an increase in activity that precedes and re-
sembles eye-blink CRs (McCormick & Thompson, 1984). Based on
these experimental results, computational studies of cerebellum-
dependent eye-blink conditioning have assumed that the output
of CN neurons predicts the amplitude and timing of conditioned
eye-blink responses (Medina, Garcia, Nores, Taylor, & Mauk, 2000;
Wetmore, Mukamel, & Schnitzer, 2008). An example of such a
computational study is the cerebellar network model by Medina
et al. (2000). In the model by Medina and collaborators, the neu-
ral network model of cerebellar cortex by Buonomano and Mauk
(1994) has been extended to include six CN neurons that provide
the output from the model, generating spike responses with tem-
poral profiles that replicate experimentallymeasured eye-blink re-
sponses. Each of these CN neuron models receives inhibitory input
from 15 PCs and excitatory input from 100 mossy fibers; the CN
neurons are implemented as leaky integrate-and-fire models and
provide a simple readout mechanism for the combined excitatory
and inhibitory input. The Medina model generates appropriately
timed responses based on long-term depression (LTD) at parallel
fiber–PC synapses that are active at the same time as the US, and
it suppresses responses at incorrect times based on long-term po-
tentiation (LTP) at these synapses when they are activatedwithout
a coincident US.Moreover, LTP atmossy fiber–CN neuron synapses

is included to be able to replicate the short-latency responses that
are observed after lesions to the cerebellar cortex.

Apart from adjusting synaptic parameters based on available
electrophysiological data, the Medina model does not make any
specific assumptions about the physiological characteristics of the
different cerebellar neurons. A hallmark behavior of CN neurons
is the generation of rebound spike responses at the offset of
inhibitory synaptic inputs and hyperpolarizing current injections
(Fig. 2). The rebound responses that followhyperpolarizing current
injections are well characterized, and they are formed by varying
combinations of fast rebound spike bursts, and prolonged periods
of accelerated spiking (Llinas & Muhlethaler, 1988; Sangrey &
Jaeger, 2010) (Fig. 2). Rebound responses can also follow strong
bursts of inhibitory synaptic inputs, but these have been studied
to a lesser extent and their relevance for cerebellum dependent
behaviors and their contribution to cerebellar computation
and neural coding are unresolved questions (Alvina, Walter,
Kohn, Ellis-Davies, & Khodakhah, 2008; Bengtsson, Ekerot, &
Jorntell, 2011; Tadayonnejad et al., 2010; Tadayonnejad, Mehaffey,
Anderson, & Turner, 2009).

Rebound bursts are a prime candidate mechanism for temporal
coding in that they create a well-timed spike burst following a
specific input event. In their computational study of cerebellar
learning, Wetmore et al. (2008) suggest that the rebound spike
responses that can follow inhibitory input to CNneurons are crucial
for the recall of memories and the generation of appropriately
timed output from the cerebellar circuitry. According to their
‘‘lock-and-key’’ hypothesis, the induction of LTD and LTP at parallel
fiber–PC synapses is necessary, but not sufficient, to generate a
desired cerebellar output. In addition, cerebellar cortical synaptic
plasticity has to result in temporal patterns of PC activity that
can elicit rebound responses in CN neurons (Fig. 2). Rebounds
will only be triggered by temporal input spike patterns that
comprise an increase followed by a decrease in the PC spike rate.
Thus, Wetmore et al. consider these temporal spike patterns a
‘‘key’’, and the temporal filtering properties of CN neurons that
determine whether or not a rebound response occurs a ‘‘lock’’.
They demonstrate the potential contribution of rebound responses
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