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a b s t r a c t

This paper investigates the consistent stabilizability of switched Boolean networks (SBNs) by using
the semi-tensor product method, and presents a number of new results. First, an algebraic expression
of SBNs is obtained by the semi-tensor product, based on which the consistent stabilizability is then
studied for SBNs and some necessary and sufficient conditions are presented for the design of free-
form and state-feedback switching signals, respectively. Finally, the consistent stabilizability of SBNswith
state constraints is considered and some necessary and sufficient conditions are proposed. The study of
illustrative examples shows that the new results obtained in this paper are very effective in designing
switching signals for the consistent stabilizability of SBNs.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Network modelling has been widely applied to the analysis
of cellular level biological systems, and many interesting results
have been proposed for gene regulatory networks (El-Farra, Gani, &
Christofides, 2005; Karlebach & Shamir, 2008; Marínez-Rodríguez,
May, &Vargas, 2008;Wang, Lam,Wei, Fraser, & Liu, 2008), inwhich
the gene regulatory network was modelled into Boolean networks
(Kauffman, 1969), Bayesian networks (Marínez-Rodríguez et al.,
2008) and differential equations (El-Farra et al., 2005; Wang et al.,
2008), respectively. When using Boolean networks to model gene
regulatory networks, gene expressions are quantized as 1 and 0
to represent active and inactive, respectively. Since Boolean net-
works are structurally simple, the study of Boolean networks has
attracted a great deal of attention from scholars and many excel-
lent results have occurred in a series of works (Akutsu, Hayashida,
Ching, & Ng, 2007; Drossel, Mihaljev, & Greil, 2005; Kauffman,
1969; Kobayashi & Hiraishi, 2011). Recently, a novel matrix prod-
uct, namely the semi-tensor product of matrices, has been pro-
posed in Cheng, Qi, and Li (2011) and successfully applied to the
analysis and control of Boolean networks. By this method, it is very
convenient to convert a logical expression into an algebraic form,
based on which many fundamental and landmark results have
been presented for Boolean networks (Chen & Sun, 2013; Cheng,
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2011; Cheng, Li, & Qi, 2010; Cheng & Qi, 2009; Cheng et al., 2011;
Cheng & Zhao, 2011; Laschov &Margaliot, 2012; Li, 2012; Li & Chu,
2012; Li & Sun, 2011, 2012a, 2012b; Li & Wang, 2012a, 2012b; Li,
Wang, & Liu, 2012; Zhao, Cheng, & Qi, 2010; Zhao, Li, & Cheng,
2011). In Cheng and Qi (2009), the controllability and observability
of Boolean control networks were investigated, and a set of neces-
sary and sufficient conditions were presented. The infinite horizon
optimal control of logical control networkswas considered in Zhao
et al. (2011), and an optimal control was designed by the frame-
work of game theory. The synchronization of two deterministic
Boolean networks was studied in Li and Chu (2012), and some nec-
essary and sufficient conditions were established based on the al-
gebraic representation of logical dynamics. In Li and Sun (2011),
the controllability of aµ-th order Boolean control network was in-
vestigated, and somenecessary and sufficient conditionswere pro-
vided by using a kind of input-state incidence matrix.

It is well worth pointing out that, while typical Boolean net-
works are described by purely discrete dynamics, the dynamics
of biological networks in practice is often governed by different
switching models (El-Farra et al., 2005). A practical example is the
cell’s growth and division in a eukaryotic cell, which are usually
described as a sequence of four processes triggered by a set of
conditions or events (Lewin, 2000). It is noted that, some other
existing networks can also be converted to switched ones. For
instance, a Boolean control network can be expressed as a Boolean
switched system by encoding the control inputs as a switching sig-
nal (Laschov &Margaliot, 2012), and a deterministic asynchronous
Boolean network can also be converted to a switched one by us-
ing the method given in Kobayashi and Hiraishi (2011). Thus, the
logical switching phenomenon is often encountered in practice,
and it is necessary for us to study the switched Boolean networks
(SBNs). In the past three decades, due to the great importance of
switched systems in both theoretical development and practical
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applications, the study of ordinary switched systems has drawn a
great deal of attention, and a large number of results have been
obtained for the systems’ stability analysis and control designs
(Liberzon &Morse, 1999; Sun, 2004, 2006; Sun &Ge, 2005; Trofino,
Assmann, Scharlan, & Coutinho, 2009).

As one of the most important topics in the study of switched
systems, the switching stabilizability was firstly proposed by Sun
(2004) and then was studied in Sun (2006); Sun and Ge (2005);
Trofino et al. (2009), which can be usually divided into two main
classes (Sun, 2004; Sun & Ge, 2005): one is the so-called pointwise
stabilizability, and the other is the consistent one. Obviously, the
main advantage of the consistent stabilizability over the pointwise
one is that it has strong robustness against the perturbation of
initial states. In Li et al. (2012), we presented some necessary
and sufficient conditions for the pointwise stabilizability of SBNs.
However, to our best knowledge, there is no work available on the
study of the consistent stabilizability for SBNs. In fact, it is a very
challenging topic in that the variables of an SBN only take ‘‘1’’ and
‘‘0’’ and the existing methods for ordinary switched systems can
hardly be applied to SBNs.

In this paper, using the semi-tensor product method, we inves-
tigate the consistent stabilizability of switched Boolean networks.
Firstly, we convert the SBN into an algebraic form by the semi-
tensor product. Secondly, we study the consistent stabilizability
for the SBN based on the algebraic form, and present some nec-
essary and sufficient conditions for the design of free-form and
state-feedback switching signals, respectively. Finally, we consider
the consistent stabilizability of the SBN with state constraints, and
propose some necessary and sufficient conditions. The main con-
tributions of this paper are as follows: (i) the semi-tensor prod-
uct method is firstly applied to the consistent stabilizability of
switched Boolean networks, and a new theoretical framework is
established via this method. (ii) some necessary and sufficient
conditions are given to design both free-form and state-feedback
switching signals for the consistent stabilizability of the SBNwith-
out/with state constraints. These conditions are easily verified by
using the MATLAB toolbox established by Cheng (http://lsc.amss.
ac.cn/∼dcheng/stp/STP.zip).

The rest of this work is structured as follows. Section 2 contains
some preliminaries on the semi-tensor product of matrices and
the algebraic expression of logical functions. In Section 3, we
investigate the consistent stabilizability of SBNs without/with
state constraints, and establish some necessary and sufficient
conditions. Two illustrative examples are given in Section 4, which
is followed by a brief conclusion in Section 5.

2. Preliminaries

In this section, we give some necessary preliminaries on the
semi-tensor product of matrices and the algebraic expression of
logical functions, which will be used in the sequel.

Definition 2.1 (Cheng et al., 2011). The semi-tensor product of two
matrices A ∈ Rm×n and B ∈ Rp×q is

A n B = (A ⊗ I α
n
)

B ⊗ I α

p


, (2.1)

where α = lcm(n, p) is the least common multiple of n and p, In
denotes the n× n identity matrix, and ⊗ is the Kronecker product.

Remark 2.2. It is noted that when n = p, the semi-tensor prod-
uct of A and B becomes the conventional matrix product. Thus, the
semi-tensor product of matrices is a generalization of the conven-
tionalmatrix product.We can simply call it ‘‘product’’ and omit the
symbol ‘‘n’’ if no confusion arises in the following.

Proposition 2.3 (Cheng et al., 2011). The semi-tensor product has
the following properties:

(i) (Associative) Let A ∈ Rm×n, B ∈ Rp×q and C ∈ Rr×s. Then
(A n B) n C = A n (B n C).

(ii) (Non-commutative but permutation equivalent)
(1) Let X ∈ Rt×1 be a column vector and A ∈ Rm×n. Then

X n A = (It ⊗ A) n X . (2.2)
(2) Let X ∈ Rm×1 and Y ∈ Rn×1 be two column vectors. Then

Y n X = W[m,n] n X n Y , (2.3)
where W[m,n] ∈ Rmn×mn is called the swap matrix (Cheng
et al., 2011).

The following notations will be used later.

(1) D := {1, 0}, and Dn
:= D × · · · × D  

n

.

(2) ∆n := {δk
n | 1 ≤ k ≤ n}, where δk

n denotes the k-th column of
the identity matrix In. For compactness, ∆ := ∆2.

(3) An n × t matrix M is called a logical matrix, if M = [δ
i1
n

δ
i2
n · · · δit

n ]. We express M briefly as M = δn[i1 i2 · · · it ]. Denote
the set of n × t logical matrices by Ln×t .

(4) An n × t matrix A = (aij) is called a Boolean matrix, if aij ∈

D, ∀i = 1, . . . , n, j = 1, . . . , t . Denote the set of n× t Boolean
matrices by Bn×t . It is noted that, the Boolean matrix (unlike
the logicalmatrix)mayhavemore thanone ‘‘1’’ in each column.

(5) Coli(A) denotes the i-th column of the matrix A, and Rowi(A)
denotes the i-th row of the matrix A.

(6) Blki(A) denotes the i-th n × n block of an n × mn matrix A.

By identifying True ∼ 1 ∼ δ1
2 and False ∼ 0 ∼ δ2

2 , we have
∆ ∼ D , where ‘‘∼’’ denotes two different forms of the same object.
In most places of this work, we use δ1

2 and δ2
2 to express logical

variables and call them the vector form of logical variables.
The following lemma is fundamental for the matrix expression

of logical functions.

Lemma 2.4 (Cheng et al., 2011). Let f (x1, x2, . . . , xs) : D s
→ D

be a logical function. Then, there exists a unique matrix Mf ∈ L2×2s ,
called the structural matrix of f , such that

f (x1, x2, . . . , xs) = Mf ns
i=1 xi, xi ∈ ∆, (2.4)

where ns
i=1 xi = x1 n · · · n xs.

For the conversion between xi = δ
αi
w , i = 1, . . . , τ and the

corresponding nτ
i=1 xi = δα

wτ , we have the following result.

Lemma 2.5 (Cheng et al., 2011). Assume that nτ
i=1 xi = δα

wτ . Then,
xi = δ

αi
w , i = 1, . . . , τ if and only if

α =

τ−1
i=1

(αi − 1)wτ−i
+ ατ .

Finally, we list the structural matrices for some basic logical
operators which will be used later.

Negation (¬): Mn = δ2[2 1]; Conjunction (∧): Mc = δ2[1 2
2 2]; Disjunction (∨): Md = δ2[1 1 1 2]; Conditional (→):
Mi = δ2[1 2 1 1]; Biconditional (↔): Me = δ2[1 2 2 1]; Exclusive
Or (∨̄): Mp = δ2[2 1 1 2].

3. Main results

In this section, we investigate the consistent stabilizability of
switchedBooleannetworks.We first give the problem formulation,
and then establish some necessary and sufficient conditions for the
case of the system without state constraints. Finally, we study the
consistent stabilizability of the SBN with state constraints.
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