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a b s t r a c t

In this letter, we propose a new approach for the stability analysis of distributed continuous-time
consensus algorithms in directed networks with time-dependent communication patterns. Instead of
using a continuous-time Lyapunov function, we show how to analyze such a continuous-time algorithm
by converting it to a discrete-time model. By using this method, we obtain a more general convergence
result than existing ones. An example with numerical simulation is also provided to illustrate the
theoretical results.
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1. Introduction

In coordination of a network of dynamical agents, a group of
agents seeks to agree upon certain quantity of interest. This is the
so-called consensus problem, which arises in broad areas of appli-
cations involving multiagent systems. For example, in formation
control of vehicles (Gazi & Passino, 2003; Lin, Broucke, & Francis,
2004), each agent can be a vehicle, and the state variable may rep-
resent its position in one-dimensional place; in phase synchroniza-
tion of oscillators (Jadbabaie, Motee, & Barahona, 2004), each agent
is an oscillator, and the state variable is its oscillation phase; in dis-
tributed agreement or decision making problem (DeGroot, 1974;
Olfati-Saber&Murray, 2003, 2004; Ren&Beard, 2004; Xiao&Boyd,
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2004), the state variable can be an abstract decision variable such
as the subjective point estimation of the unknown value of some
parameter by each individual. Here we just name a few of them.
For a review of this area, see the surveys Olfati-Saber (2007), Ren,
Beard, and Atkins (2005) and references therein.

If the state variable of each agent converges to a common value
as time goes to infinity, then the system reaches a consensus.
In order to reach a consensus, usually a distributed consensus
protocol is employed. In a distributed consensus protocol, each
agent updates its state variable through local interactions, which
may be time-dependent and non-bidirectional. Basically, there are
two kinds of consensus algorithms: the discrete-time algorithm
and continuous-time algorithm. Let xi(t) ∈ R be the state variable
of agent i at time t . Then in a discrete-time consensus algorithm,
the next state of agent i is a weighted average of its neighbors:

xi(t + 1) =


j∈Ni

aijxj(t),

j∈Ni

aij = 1, (1)

while in a continuous-time consensus algorithm, xi(t) evolves
according to a weighted combination of the difference between xi
and its neighbors:

ẋi(t) =


j∈Ni

aij[xj(t) − xi(t)], (2)
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where aij > 0 is the coupling strength from agent j to agent i.
And consensus can be achieved if there exists x∗

∈ R such that
for each i,

lim
t→∞

xi(t) = x∗.

Convergence analysis of the discrete-time consensus algorithm
is mainly based on the convergence theory of products of stochas-
tic matrices. For example, see DeGroot (1974), Liu, Lu, and Chen
(2011), Lu, Atay, and Jost (2011), Tahbaz-Salehi and Jadbabaie
(2008, 2010), and references therein. Meanwhile, continuous-time
consensus algorithms have been investigated by various meth-
ods. In Olfati-Saber and Murray (2004), the convergence prop-
erty of continuous-time consensus algorithms has been analyzed
based on the eigen-structure of the coupling matrix. However, this
approach can only apply to constant couplings but not to time-
varying couplings. Continuous-time consensus algorithms with
general non-bidirectional and time-dependent couplings are in-
vestigated in Moreau (2004). By a Lyapunov function method, the
author proved if there exist a fixed time length T and a positive
constant δ such that the δ-graph corresponding to the integration
of the coupling matrix across each time interval of length T has
a spanning tree with a fixed root, then the network will reach a
consensus as time tends to infinity. Recently, in Cao, Zheng, and
Zhou (2011), the authors proved a necessary and sufficient condi-
tion for consensus in undirected continuous-time networks with
time-varying connections based on the notion of infinite integral
connectivity. Although their result is more general than that in
Moreau (2004) concerning undirected networks, it cannot apply to
directed networks. And somenovel approach should be introduced
to extend the result of Moreau (2004) in directed networks.

In this letter, we consider the same continuous-time consen-
sus model as that formulated in Moreau (2004). Instead of using
the routine Lyapunov function method, we propose a novel ap-
proach, by which the continuous-time consensus algorithm can be
converted into a discrete-time one. Then by using the results ob-
tained for the discrete-time consensus algorithms, we can prove
a more general convergence result than that in Moreau (2004).
More importantly, the new method bridges the gap between the
discrete-time and continuous-time consensus algorithms, thus it
is a powerful tool for studying time-varying continuous-time sys-
tems. Some possible extensions can be expected. For example, it
may find applications in the analysis of mixed systems which con-
tains both discrete- and continuous-time parts. Examples of such
systems include continuous-time systems with incomplete com-
munications such as sampled-data control (Shen, Wang, & Liu,
2012) or impulsive control. If we can succeed in converting them
into discrete-time systems, thenwe can use some of the results ob-
tained for discrete-time systems such as that in Shen, Wang, and
Hung (2010). Furthermore, since consensus can be considered as a
special case of synchronization, it is possible to extend thismethod
to the study of synchronization. Although a direct extension to the
synchronization analysis of complex networks of general dynam-
ical systems looks quite difficult at this time, it is still possible to
extend it on some special systems at first.

The rest of this letter is organized as follows. In Section 2,
the mathematical preliminaries are presented; The main results
with proof are provided in Section 3; An example with numerical
simulation are presented in Section 4; And the paper is concluded
in Section 5.

2. Preliminaries

In this section, we provide some definitions and lemmas from
matrix theory and graph theory that will be used in this paper.

Let I denote the identity matrix of appropriate dimension, and
ê denote a column vector of appropriate dimensionwith all entries

being 1. For two matrices A = [aij], B = [bij] of the same dimen-
sion, A ≥ B means aij ≥ bij for each i, j. For a series of matrices
A1, A2, . . . , Am, the expression

m
k=1 Ak = Am · · · A1 denotes the

left product.
Square matrices with nonnegative off-diagonal elements are

sometimes referred to asMetzler matrices (Luenberger, 1979), and
a nonnegative square matrix with each row sum being 1 is called a
stochastic matrix.

We also need the following definitions.

Definition 1 (Liu et al., 2011). For a nonnegative matrix A = [aij],
and some constant δ > 0, the δ-matrix of A, denoted by Aδ

= [aδ
ij]

is defined as

aδ
ij =


0, aij < δ
aij, aij ≥ δ.

Definition 2 (Wu, 2006). An n × n nonnegative matrix A = [aij]
is scrambling, if for each pair of indices (i, j) there exists k (k = i
or k = j is allowed) such that both aik > 0 and ajk > 0. For some
δ > 0, A is δ-scrambling, if the δ-matrix Aδ of A is scrambling.

Example 1. The matrix

a1 0 0
a2 0 0
a3 0 0


is scrambling when a1, a2, a3 >

0, and is δ-scrambling when a1, a2, a3 > δ. While the matrices
a1 0 0
0 a2 0
0 0 a3


and


0 0 a1
a2 0 0
0 a3 0


are not scrambling.

Definition 3 (Wu, 2006). For a real matrix A = [aij], the ergodic
coefficient, denoted by EC(A), is defined as

EC(A) = min
i,j


k

min{aik, ajk}.

Remark 1. For a stochastic matrix A, 0 ≤ EC(A) ≤ 1, EC(A) > 0 if
and only if A is scrambling, and EC(A) ≥ δ if A is δ-scrambling.

Definition 4 (Wu, 2006). For a real matrix A = [aij] ∈ Rn×m, its
Hajnal diameter, denoted by HD(A), is defined as:

HD(A) = max
i,j

m
k=1

max{0, aik − ajk}.

Remark 2. For a real matrix A, the Hajnal diameter HD(A) mea-
sures the difference between its rows, and HD(A) = 0 if and only if
all the rows ofA are identical. Particularly, ifA is a stochasticmatrix,
then its Hajnal diameter 0 ≤ HD(A) ≤ 1. For example, HD(A) = 0
if A = ê · v⊤ where v is a column vector, and HD(A) = 1 if A = I .

The following Hajnal’s inequality is a basic tool for the
convergence analysis of consensus algorithms.

Lemma 1 (Hajnal, 1958, Paz & Reichaw, 1967). Let A ∈ Rn×n be a
stochastic matrix, then for any real matrix B ∈ Rn×m,

HD(AB) ≤ [1 − EC(A)]HD(B).

For example, if A = I , then EC(A) = 0 and for any B, HD(AB)
= HD(B). If A = ê · ê⊤, then EC(A) = 1 and for any B,HD(AB)
= 0. In both cases, we have HD(AB) = [1 − EC(A)]HD(B).

If A =


0 1/2 1/2

1/3 0 2/3
1/4 3/4 0


, B =


1/2 0 1/2
1/3 2/3 0
0 1/4 3/4


, then AB =

1/6 11/24 3/8
1/6 1/6 2/3
3/8 1/2 1/8


, EC(A) = 1/4,HD(B) = 3/4, and HD(AB) =

13/24. Thus, HD(AB) < [1 − EC(A)]HD(B) = 9/16.

Remark 3. It should be noted that to use Hajnal’s inequality, B
need not be a square matrix. Actually, it can be a vector. For
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