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a b s t r a c t

This paper proposes a neuronal circuitry layout and synaptic plasticity principles that allow the (pyrami-
dal) neuron to act as a ‘‘combinatorial switch’’. Namely, the neuron learns to be more prone to generate
spikes given those combinations of firing input neurons for which a previous spiking of the neuron had
been followed by a positive global reward signal. The reward signal may be mediated by certain mod-
ulatory hormones or neurotransmitters, e.g., the dopamine. More generally, a trial-and-error learning
paradigm is suggested in which a global reward signal triggers long-term enhancement or weakening
of a neuron’s spiking response to the preceding neuronal input firing pattern. Thus, rewards provide a
feedback pathway that informs neurons whether their spiking was beneficial or detrimental for a par-
ticular input combination. The neuron’s ability to discern specific combinations of firing input neurons
is achieved through a random or predetermined spatial distribution of input synapses on dendrites that
creates synaptic clusters that represent various permutations of input neurons. The corresponding den-
dritic segments, or the enclosed individual spines, are capable of being particularly excited, due to local
sigmoidal thresholding involving voltage-gated channel conductances, if the segment’s excitatory and ab-
sence of inhibitory inputs are temporally coincident. Such nonlinear excitation corresponds to a particular
firing combination of input neurons, and it is posited that the excitation strength encodes the combinato-
rial memory and is regulated by long-term plasticity mechanisms. It is also suggested that the spine cal-
cium influx thatmay result from the spatiotemporal synaptic input coincidencemay cause the spine head
actin filaments to undergo mechanical (muscle-like) contraction, with the ensuing cytoskeletal deforma-
tion transmitted to the axon initial segment where it may modulate the global neuron firing threshold.
The tasks of pattern classification and generalization are discussed within the presented framework.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The field of reinforcement learning (RL) solves the problem
of sequential decision making by an agent receiving delayed nu-
merical rewards (Sutton & Barto, 1998). The field can be viewed
as originating from two major threads: the idea of learning by
trial and error that started in the psychology of animal learning
(e.g., Thorndike, 1911), and the problem of optimal control and its
solution using value functions and dynamic programming (Bell-
man, 1957). An important branch of the RL theory is the tempo-
ral difference (TD) class models for the phasic activity of midbrain
dopamine neurons (Montague, Dayan, Person, & Sejnowski, 1995;
Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan, &Montague,
1997). The dopamine activity is believed to encode a reward pre-
diction error (RPE) signal that guides learning in the frontal cor-
tex and the basal ganglia (Bush &Mosteller, 1951a, 1951b; Schultz,
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1998, 2006). Most scholars active in dopamine studies believe that
the dopamine signal adjusts synaptic strengths in a quantitative
manner until the subject’s estimate of the value of current and fu-
ture events is accurately encoded in the frontal cortex and basal
ganglia (Glimcher, 2011).

This paper considers the problem of instantaneous decision
making by an agent receiving immediate rewards within an RL-
type framework. A trial-and-error learning paradigm is suggested
in which the reward signal modulates memory in (cortical) neu-
rons that act as combinatorial switches. The reward signal may
come from an ‘‘elementary’’ reward generator such as that reflect-
ing pain or satisfaction of hunger; it may also involve an RPE-
type or ‘‘critic’’-type (Sutton & Barto, 1998) signal mediated by
dopamine and/or other agents that could convey positive as well
as negative reward components as was first suggested in Daw,
Kakade, and Dayan (2002).

The first contributing thread to the presented model, as in the
classical RL theory, is the idea of learning by trial and error and rein-
forcement of favorable outcomes. The idea, as expressed in Edward
Thorndike’s ‘‘Law of Effect’’ (Thorndike, 1911), is: ‘‘Of several re-
sponses made to the same situation those which are accompanied

0893-6080/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.neunet.2013.04.010

http://dx.doi.org/10.1016/j.neunet.2013.04.010
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:rvachev@alum.mit.edu
http://dx.doi.org/10.1016/j.neunet.2013.04.010


M.M. Rvachev / Neural Networks 46 (2013) 62–74 63

a b

Fig. 1. The organism-level learning problem and an outline of the suggested solution. (a) Formulation of the problem. Neurons xi, i = 1, . . . ,m in layer L1 connect to
neurons yk, k = 1, . . . , n in layer L2 . A pattern of excitations X = {xi}, if responded to by a pattern of excitations Y = {yk}, elicits a positive or negative reward R resulting
from the interaction of the generatedmotor behaviorwith the environment. The problem is: given an arbitrary X , excite Y ∗(X) that would lead to positive R. (b) Outline of the
suggested solution. Learning proceeds by trial and error. Excitation of pattern X excites a pattern Y (X), possibly with the help of an ‘‘action’’ mechanism (e.g., depolarization
to all L2 neurons until a certain level of the aggregate L2 output activity is achieved, as discussed in Section 2.3). A ‘‘guessing’’ mechanism introduces variations in the excited
patterns Y . X ’s excitation of those Y that lead to positive (negative) R is enhanced (weakened).

or closely followed by satisfaction to the animal will, other things
being equal, be more firmly connected with the situation, so that,
when it recurs, they will be more likely to recur; those which are
accompanied or closely followed by discomfort to the animal will,
other things being equal, have their connections to the situation
weakened, so that, when it recurs, they will be less likely to occur.
The greater the satisfaction or discomfort, the greater the strength-
ening or weakening of the bond’’. This idea is widely regarded as a
basic principle underlying much behavior (Campbell, 1960; Cziko,
1995; Dennett, 1981; Hilgard & Bower, 1975).

The second contributing thread is a novel idea that, givenproper
neuronal circuitry layout, pyramidal neurons can process informa-
tion by switching the neuron output based on active input ne-
uron combinations. This idea builds on the Two-Layer Neural
Network (TLNN) model for the pyramidal neuron (Poirazi, Bran-
non, &Mel, 2003). Additional computational advantages that could
make the idea possible may be provided by mechanical force gen-
erated at the dendritic spines and stretch-activation of Na+ chan-
nels at the axon initial segment. An interesting feature of the
presented framework is its ability to distil reusable abstract con-
cepts about the environment, making learning with the low-
dimensional feedback signal, the reward, efficient.

1.1. Problem formulation

The following organism-level learning problem is posed. For
simplicity, the neuronal activity states are considered to be bi-
nary: ‘‘firing’’ or ‘‘not firing’’. Given an arbitrary combination X of
firing neurons in a (perhaps sensory) input layer L1, activate a cor-
responding ‘‘optimal’’ combination Y ∗(X) of firing neurons in a
(perhaps motor) output layer L2 (Fig. 1(a)). The optimal combi-
nation Y ∗(X) is defined as one that produces the motor behavior
that results in a positive global reward signal R in the organism. As
such, Y ∗(X) can be an arbitrary combination of L2 neurons from a
combinatorics perspective. The reward signalR, in biological terms,
may bemediated by certainmodulatory neurotransmitters or hor-
mones that are diffusely delivered to generally trainable neurons.
It is assumed that in biological systems R can be activated by evo-
lutionarily hardwired circuits, such as when hunger is satisfied, as
well as by higher mental processes, e.g., due to the organisms’ sub-
jective evaluation of themotor behavior as being satisfactory given
the sensory inputs.

It is suggested that the learning process proceeds in a trial-and-
error fashion. Given a firing combination X variations are intro-
duced in the firing combination Y with the X ’s excitation of those
Y that lead to positive R being enhanced while X ’s excitation of
those Y that lead to negative R being weakened (Fig. 1(b)). Details

Fig. 2. The single-neuron learning problem. L1 neurons xi connect to an L2 neuron
yk . Long-term enhance (weaken) yk excitation by those combinations X for which
the following yk excitation resulted in a positive (negative) R. The enhancement
and weakening of excitation may involve long-term potentiation (LTP) and long-
term depression (LTD) processes that are influenced by both the combinatorics of
the problem and the reward R, as suggested in Section 2.2.1.

of this suggested process are discussed in more detail in Section 5.
First, a more elementary learning task is considered: given an arbi-
trary firing combination X long-term strengthen excitation of an L2
neuron yk, specifically by X , if the subsequent reward R is positive.
Conversely, long-term weaken excitation of yk, specifically by X , if
R is negative (Fig. 2).

2. Solution to the single-neuron combinatorial switching
problem

2.1. Local dendritic integration as the basis for combinatorial memory

The following mechanism is posited as the solution and is il-
lustrated in Figs. 3 and 4. L1 neurons connect to the yk dendrites
at random or predetermined locations, forming spatially local-
ized (and possibly overlapping) ‘‘synapse neighborhoods’’ Nj that
contain various permutations of input neurons. Sufficient depo-
larization of the dendritic and/or spine interior within the jth
neighborhood, caused by the temporal coincidence of the neigh-
borhood’s excitatory and absence of inhibitory inputs, causes Nj
excitation. The Nj excitation drives local input–output function Fj
that has a ‘‘combinatorial memory’’ input–output component Cj
that possesses the following properties: (1) Cj expression is long-
termenhanced (weakened) if the neighborhoodNj is excited, this is
closely followed by a back-propagating action potential (BPAP) at
Nj, and the immediately following R is positive (negative), and (2)
compared to other drivers of neuron stimulation, Cj can substan-
tially contribute to the yk excitation. Note that the input–output
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