
Neural Networks 46 (2013) 144–153

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Integer sparse distributed memory: Analysis and results
Javier Snaider a,∗, Stan Franklin a, Steve Strain b, E. Olusegun George c

a Computer Science Department & Institute for Intelligent Systems, The University of Memphis, 365 Innovation Dr., Memphis, TN 38152, United States
b Department of Biomedical Engineering, The University of Memphis, 365 Innovation Dr., Memphis, TN 38152, United States
c Department of Mathematical Sciences, The University of Memphis, 365 Innovation Dr., Memphis, TN 38152, United States

a r t i c l e i n f o

Article history:
Received 3 July 2012
Received in revised form 5 May 2013
Accepted 6 May 2013

Keywords:
Sparse distributed memory
High dimensional space
Auto-associative memory

a b s t r a c t

Sparse distributed memory is an auto-associative memory system that stores high dimensional Boolean
vectors. Here we present an extension of the original SDM, the Integer SDM that uses modular arithmetic
integer vectors rather thanbinary vectors. This extensionpreservesmanyof the desirable properties of the
original SDM: auto-associativity, content addressability, distributed storage, and robustness over noisy
inputs. In addition, it improves the representation capabilities of the memory and is more robust over
normalization. It can also be extended to support forgetting and reliable sequence storage. We performed
several simulations that test the noise robustness property and capacity of the memory. Theoretical
analyses of the memory’s fidelity and capacity are also presented.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Sparse distributed memory (SDM) (Kanerva, 1988, 1993) is
based on large binary vectors and has several desirable proper-
ties. It is distributed, auto-associative, content addressable, and
noise robust. Moreover, this memory system exhibits interesting
psychological characteristics as well (interference, knowing when
it does not know, the tip of the tongue effect), that make it an
attractive option with which to model episodic memory (Badde-
ley, Conway, & Aggleton, 2001; Franklin, Baars, Ramamurthy, &
Ventura, 2005). Implementations of SDM are ongoing for various
applications (Bose, Furber, & Shapiro, 2005; Furber, Bainbridge,
Cumpstey, & Temple, 2004; Jockel, 2009; Mendes, Crisóstomo &
Coimbra, 2009;Meng et al., 2009). Several improvements and vari-
ations have been proposed for SDM; for example Ramamurthy and
colleagues introduced forgetting as part of an unsupervised learn-
ingmechanism (Ramamurthy, Baars, D’Mello, & Franklin, 2006; Ra-
mamurthy & Franklin, 2011). The same authors also proposed the
use of ternary vectors, introducing a ‘‘do not care’’ symbol as a third
possible value for the dimensions of the vectors (D’Mello, Rama-
murthy, & Franklin, 2005). Also Jaeckel (1989a, 1989b) proposed
two variations of the original SDM, the selected coordinate design
and the hyperplane design. Both designs modify the way that hard
locations (see the next section) are selected. These designs slightly
improve the signal to noise ratio of the memory. Furber and col-
leagues (2004) created a combined version of the Jaeckel’s hyper-
plane design and a correlationmatrixmemoryusing sparkling neu-
rons.

∗ Corresponding author.
E-mail address: jsnaider@memphis.edu (J. Snaider).

The original SDM uses binary vectors for both addresses and
data words. This usage results in several limitations. First, real data
are not always Boolean, making representations using more than
two values desirable. A possible solution for this limitation is to use
several dimensions of the word vectors to represent one feature,
but this approach does not fit very well with the structure of SDM.
In the distance calculation, a difference in any dimension has the
same weight as that of any other dimension, but if several bits (i.e.
dimensions) are used to represent a single feature, the weight of
the bits should not be the same. Mendes and colleagues (2009)
studied this problem in detail. They evaluated several binary
encodings to use with SDM in robot navigation tasks and reported
their difficulties and limitations. Using binary numbers coding
some transitions have Hamming distances that incorrectly reflect
the difference between the features. For example, the Hamming
distance between seven (0111) and eight (1000) is 4 instead of
the desired distance of 1. They also reported the performance of
the Gray code (Gray, 1953), which only partially mitigates this
effect. The best solution that they proposed is to use what the
authors call sum code, in which, for example, 3 is represented
as 111 and 5 as 11111. This coding substantially increases the
dimensionality of the memory. Interestingly, they report that
grouping bits and processing them as integers produces excellent
performance. The extension proposed in this paper directly uses
integer vectors, achieving similar performance but without the
disadvantages reported by Mendes. While both models have
essentially the same memory requirements, the vectors required
byMendes’ model are larger (in bits) than the ones used by Integer
SDM. Also, the dimensions in Mendes’ are not homogeneous.
Some dimensions have more ‘‘weight’’ than others, but this is not
reflected in the metric employed in the space. Although we have

0893-6080/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.neunet.2013.05.005

http://dx.doi.org/10.1016/j.neunet.2013.05.005
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:jsnaider@memphis.edu
http://dx.doi.org/10.1016/j.neunet.2013.05.005


J. Snaider et al. / Neural Networks 46 (2013) 144–153 145

not compared the experiments’ results, the similarities between
the two models suggest that they have similar capacity. However,
the more homogeneous space and distance calculation of Integer
SDM suggest that it would be more noise robust than Mendes’
model.

Another disadvantage of binary vectors is the loss of informa-
tion due to the noise introduced into the representation by the nor-
malization used in combining vectors. Vectors can be summed up
dimension by dimension (for this operation, vectors belonging to
{0; 1}n are replaced by vectors of {−1; +1}n). This operation pro-
duces a vector belonging to Zn, the space of integer vectors with n
dimensions. The normalization process, which in general is a sim-
ple threshold function with a threshold of zero, reduces the resul-
tant to a vector that is also in {−1; +1}n but with significant loss of
information. See for example Kanerva (2009), Snaider and Franklin
(2011, 2012a).

A variation of SDM, Integer Sparse Distributed Memory (Inte-
ger SDM), is based on large vectors, on the order of thousands of
dimensions, where each dimension has a range of possible inte-
ger values. This memory has properties similar to the original one,
noise robustness, auto-associativity and being distributed. A fur-
ther extension of Integer SDM permits words and addresses of dif-
ferent lengths, which is particularly useful for the reliable storage
of sequences and other data structures (Snaider & Franklin, 2011,
2012a). In addition, thismemory avoids the limitations imposed by
binary representation, as described above, allowing a better encod-
ing of non-binary data and alleviating the normalization problem
when combining several vectors.

The counters employed by the hard locations (see below) in the
Integer SDM are similar, but not identical, to the hypercolumns
described by Johansson and colleagues (2002). Each hypercolumn
also has a predefined number of values, and the output follows
winner-take-all rule, as in each dimension’s output from a hard lo-
cation. However, the learning mechanisms of the two models are
different: the neural networkwith hypercolumns employs amech-
anism similar to Hopfield networks, whereas Integer SDM’s learn-
ingmechanism resembles that of the original SDM. Kanerva (1993)
extensively compared these two models. Interestingly, Lansner
and Holst (1996) described the use of hypercolumns to represent
ranges of continuous values, which may also be represented us-
ing Integer SDM. Furthermore, they discuss the similarity between
hypercolumns and the columns in the cortex, lending additional
support to the biological plausibility of our model.

This paper is a follow up to Snaider and Franklin (2012b). In ad-
dition to the description of the memory, here we present detailed
experiments that test the memory capacity and its noise robust-
ness capability, and theoretical analyses of thememory fidelity and
capacity, which constitute the main contributions of this paper. In
the following section we briefly describe SDM. Then we introduce
Integer SDM, present analyses of the memory fidelity and capac-
ity, and discuss several experiments with this memory and their
results. Finally we propose some directions for further research.

2. Sparse distributed memory

In this section, we briefly describe the components of SDM
that are similar to those used in Integer SDM. For more informa-
tion about SDM, both leisurely descriptions (Franklin, 1995, pp.
329–344) and highly detailed descriptions (Kanerva, 1988) are
available.

SDM implements a content addressable random access mem-
ory with an address space of the order of 21000 or evenmore. In the
examples that follow, we will use 1000 dimensional binary vec-
tors. Both addresses and words are binary vectors whose length
equals the number of dimensions of the space. An important prop-
erty of such high dimensional spaces is that two randomly cho-
sen vectors are relatively far away from each other, meaning that

they are uncorrelated. This vector space utilizes the Hamming dis-
tance to measure the distances between vectors. To construct the
memory, a sparse uniformly distributed sample of addresses, on
the order of 220 of them, is chosen. The number of addresses se-
lected to construct the memory is denoted by m. These addresses,
called hard locations, are the units of storage of the memory. Only
hard locations can store data. For this purpose, each hard location
has counters, one for each dimension. To write a word vector in a
hard location, for each dimension, if the bit of this dimension in
the word is 1, the corresponding counter is incremented. If it is 0,
the counter is decremented. To read a word vector from a hard lo-
cation, we compute a vector such that, for each dimension, if the
corresponding counter in the hard location is positive, 1 is assigned
to this dimension in the vector being read; otherwise 0 is assigned.

A hard location can store several words, but as a combination
rather than distinct entities. The reconstruction of one of these
words requires the participation of many hard locations in its stor-
age and retrieval. To read from an arbitrary address in SDM, the
output vector is a composite of the readings of several hard loca-
tions. To determine which hard locations are used to read or write,
an access sphere is defined. The access sphere for an address vec-
tor is a sphere with center at this address, enclosing, on average, a
proportion p of the memory’s hard locations; in our example 0.1%
is used. To write a word vector in any address of the memory, the
word is written to all hard locations inside the access sphere of the
address. To read from any address, all hard locations in the access
sphere of the address vector are read, and a majority rule for each
dimension is applied.

In general, the SDM is used as an auto-associative memory,
so the address vector is the same as the word vector (but see
Snaider & Franklin, 2012a). In this case, after writing a word into
thememory, the vector can be retrieved using partial or noisy data.
If the partial vector is inside a critical distance from the original
one, and it is used as an addresswithwhich to cue thememory, the
output vector will be close to the original one. This critical distance
depends on the number of vectors already stored in thememory. If
the retrieval process is repeated, using the first recovered vector
as address, the new reading will be even closer to the original.
After a few iterations, typically fewer than ten, the readings will
converge to the original vector. If the partial or noisy vector is
farther than the critical distance away from the original one, the
successive readings from the iterations will rapidly diverge. If the
partial vector is about at the critical distance from the original
one, successive iterations will yield vectors that are typically at
the same critical distance from the original vector. As a result,
the iterations circle the original vector, neither converging nor
diverging. This behavior mimics the ‘‘tip of the tongue’’ effect.

Several authors have studied the capacity of SDM: Chou (1989),
Kanerva (1988, 1993) and Keeler (1988). In particular Keeler
compared the capacity of SDM to the capacity of a binary Hopfield
net. He showed that both memories have the same capacity per
storage element or counter. However, SDM presents an interesting
advantage over Hopfield nets. In the former, the size of thewords is
independent of the number of storage elements; on the other hand,
in the Hopfield nets the size of the words determines the capacity
of the memory. Doubling the hard locations in SDM doubles the
capacity of the memory for a given word size (Kanerva, 1993).

Willshaw networks (Willshaw, 1981) can achieve an informa-
tion capacity of 0.69, which is higher than that for SDM. Knoblauch
and colleagues (Knoblauch, Palm, & Sommer, 2010) extensively an-
alyzed the performance ofWillshaw networks and pointed out the
importance of relating the capacity of associative memories with
their fidelity (the probability of retrieving a written word). Com-
paring SDM to Willshaw networks in these terms can be interest-
ing. However it is outside of the scope of this work.

SDM can be viewed as a synchronous, fully connected, three-
layer, feed-forward artificial neural network (Kanerva, 1993). The



Download English Version:

https://daneshyari.com/en/article/6863431

Download Persian Version:

https://daneshyari.com/article/6863431

Daneshyari.com

https://daneshyari.com/en/article/6863431
https://daneshyari.com/article/6863431
https://daneshyari.com

