
Neural Networks 46 (2013) 172–182

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Training Lp norm multiple kernel learning in the primal
Zhizheng Liang ∗, Shixiong Xia, Yong Zhou, Lei Zhang
School of Computer Science and Technology, China University of Mining and Technology, China

a r t i c l e i n f o

Article history:
Received 4 October 2012
Received in revised form 4 May 2013
Accepted 5 May 2013

Keywords:
Multiple kernel learning
Manifold regularization
Primal optimization
Empirical Rademacher complexity
Data classification

a b s t r a c t

Some multiple kernel learning (MKL) models are usually solved by utilizing the alternating optimization
method where one alternately solves SVMs in the dual and updates kernel weights. Since the dual and
primal optimization can achieve the same aim, it is valuable in exploring how to perform Lp norm MKL
in the primal. In this paper, we propose an Lp norm multiple kernel learning algorithm in the primal
where we resort to the alternating optimization method: one cycle for solving SVMs in the primal by
using the preconditioned conjugate gradient method and other cycle for learning the kernel weights.
It is interesting to note that the kernel weights in our method can obtain analytical solutions. Most
importantly, the proposed method is well suited for the manifold regularization framework in the primal
since solving LapSVMs in the primal is muchmore effective than solving LapSVMs in the dual. In addition,
we also carry out theoretical analysis for multiple kernel learning in the primal in terms of the empirical
Rademacher complexity. It is found that optimizing the empirical Rademacher complexity may obtain a
type of kernel weights. The experiments on some datasets are carried out to demonstrate the feasibility
and effectiveness of the proposed method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Kernel-based methods (Scholkopf & Smola, 2002) have been
widely used to solve some machine learning problems such as
classification, regression and dimensionality reduction in the past
several decades. Support vector machines (SVMs), one of the
most successful applications in kernel-based methods, have good
generalization performance due to the trade-off between the
training error and the maximization margin. However, in some
classification problems one often faces a lack of sufficient labeled
data in the case that manually labeling data is time-consuming
or inappropriate. In order to address this problem, some semi-
supervised learning algorithms have been proposed by using
the unlabeled and labeled samples. The Laplacian support vector
machine (LapSVM) which is one of the representative methods
in semi-supervised learning imposes the manifold regularization
term in the objective function to assume that the samples in the
local region have similar labels. It is noted that kernel functions
used in SVMs and LapSVMs can capture the similarity between a
pair of samples. In some real applications one can obtain different
types of features of samples where each feature representation
may construct a kernelmatrix, thereby resulting inmultiple kernel
matrices for the datasets. As a result somemultiple kernel variants
related to SVMs (Bach, Lanchriet, & Jordan, 2004; Lanckriet,
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Cristianini, Bartlett, Gaoui, & Jordan, 2004) have been proposed in
recent several years.

Different from single kernel learning where one usually needs
to choose proper kernel parameters, MKL usually searches for
linear (nonlinear) combinations of predefined base kernels by
maximizing some generalization performance measures such as
the margin maximization. MKL not only provides the scheme
for fusing heterogeneous data from multiple sources where each
kernel may capture a type of similarities corresponding to a data
source, but also gives a strategy for addressing the problem of
kernel selection. Thus MKL provides more flexibility in solving
some classification problems than single kernel learning. The
original multiple kernel learning where linearly combinational
kernels (Bach et al., 2004) are adopted can be formulated as a semi-
definite programming (SDP) or second-order cone programming
(SOCP) problem (Alizadeh & Goldfarb, 2003). However, due to the
high computational cost of solving SDP and SOCP, this class of
MKL only handles small-scale or medium-scale datasets. In order
to improve the efficiency of MKL, the alternating optimization
method where the kernel weights and the coefficients of the
span of training samples are alternately updated is adopted. For
example, in Sonnenburg, Ratsch, Schafer, and Scholkopf (2006),
a semi-infinite linear program (SILP) approach is used to solve
MKLwhere kernel weights are updated by a cutting planemethod.
Note that SILP may suffer from the instability of the solution of
MKL. To this end, Rakotommonjy, Bach, Canu, and Grandvalet
(2008)proposed SimpleMKL to overcome this problem where
the kernel weights are obtained by a reduced gradient descent
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method. Obviously the existing SVM solvers are directly used to
obtain the coefficients of the span of training samples in SILP or
SimpleMKL.

Some MKL algorithms impose the L1 norm constraint on the
kernel weights. This is usually called L1 norm MKL (Lanckriet
et al., 2004). In order to improve the efficacy of L1 norm MKL, the
dual augmented-Lagrangian algorithm is used to solve L1 norm
multiple kernel learning in Suzuk and Tomioka (2011). L1 norm
MKL generally obtains the sparse solution of kernel weights and
thus it has good interpretability in kernel selection. But, as pointed
out in Kloft, Brefeld, Sonnenburg, and Zien (2011), if the kernels
encode orthogonal or complemental information, L1 norm MKL
may yield the undesirable performance for some classification
problems due to over-sparseness of kernel weights. To this end,
some non-sparse MKL methods such as Lp norm MKL and MKL
based on entropy regularization (Xu, Jin, Zhu, Lyu, & King, 2010)
are proposed. In Vishwanathan, Sun, Ampornputn, and Varma
(2010), the sequentialminimization optimization (SMO) algorithm
is used to solve Lp norm MKL. To make the trade-off between the
orthogonal information and the sparse kernel weights, Yang, Xu,
Ye, King, and Lyu (2011) also used the regularization with a linear
combination of L1 norm and L2 norm to control kernel weights.
In order to explore a group structure among kernels, Szafranski,
Grandvalet, and Rakotomamonjy (2010) proposed composite
kernel learning. In addition, the mixed norm regularization for
group structures in MKL is also developed in Aflalo, Ben-Tal,
Bhattacharyya, Nath, and Raman (2011), where the efficientmirror
decent method is used to solve multiple kernel learning.

In someMKL algorithms, the SVM solvers are used to obtain the
coefficients of the span of training samples and SVMs are usually
solved in the dual. Thus theseMKL algorithms are actually solved in
terms of their dual representations. Similar to SVMs in the primal
(Chapelle, 2007; Joachims, 2006; Shalev-Shwartz, Singer, & Srebro,
2007; Yu, Vishwanathan, Güunter, & Schraudolph, 2010), one can
also implement MKL in the primal. Moreover, Chapelle (2007) also
pointed out that primal optimization and the dual optimization
are two equivalent ways of reaching the same aim. To this end,
in this paper we will explore how to implement Lp norm MKL
in the primal. Similar to previous MKL algorithms, we also resort
to the alternating optimization algorithm to solve Lp norm MKL
in the primal. That is, we alternately optimize SVMs and update
the kernel weights in the primal. In addition, we also perform
the theoretical analysis for the proposed method in terms of the
empirical Rademacher complexity. It is noted that the theoretical
analysis in this paper also gives some suggestions on how to obtain
kernel weights in terms of the empirical Rademacher complexity.
Finally, we carry out the experiments on some datasets to show the
effectiveness and usefulness of the proposed method.

The rest of this paper is organized as follows. In Section 2, we
briefly review the relatedwork on supervisedMKL and LapSVMs. In
Section 3, we introduce MKL based on the manifold regularization
in the primal and discuss how to solve it in the primal. In Section 4,
we give the theoretical analysis for the proposed method in
terms of the empirical Rademacher complexity. In Section 5, we
demonstrate the effectiveness of Lp norm MKL in the primal on
some datasets. Conclusions and further work are given in the final
section.

2. Related work

2.1. Supervised multiple kernel learning based on margin maximiza-
tion

LetX = (x1, . . . , xn) ∈ Rm×n be amatrixwhose columns consist
of n training samples in anm-dimensional space. For convenience,
assume that these n samples are ordered so that the first l ones

are labeled, with yi ∈ {−1, 1}, and the remaining u samples are
unlabeled, l + u = n. Supervised multiple kernel learning based
on the margin maximization can be formulated as the following
optimization problem:

min
f∈Hµ

r1 ∥f ∥2
Hµ

+

l
i=1

max(0, 1 − yif (xi))s, (1)

where s is either 1 (hinge loss) or 2 (squared hinge loss), Hµ is
a reproducing kernel Hilbert space with the parameter µ,Hµ is
endowed with the kernel function K taken from a linear space of
base kernels K =

d
i=1 µiKi, and r1 is a regularization parameter.

When the hinge loss, i.e., s = 1, is used, it is proved (Xu, Jin,
Ye, King, & Lyu, 2010) that Eq. (1) is equivalent to the following
optimization problem.

min
µj∈∆,fj∈Hj

r1
d

j=1

µj
fj2Hj

+

l
i=1

max


0, 1 − yi

d
j=1

µjfj(xi)


, (2)

where ∆ = {µ :
d

j=1 µj = 1, µj ≥ 0}, and Hj is the jth
reproducing kernel Hilbert space. Eq. (2) can be solved by using
the alternating optimization algorithm. In fact, one usually solves
SVMs in the dual in the case of fixed kernel weights. It is noted that
the kernel weights can be analytically obtained from Eq. (2). If one
uses the constraint ∥µ∥

p
p ≤ 1 to replace ∆ in Eq. (2), Lp normMKL

(Kloft et al., 2011; Xu, Jin, Ye et al., 2010) can be obtained.

2.2. Laplacian SVMs

By considering the intrinsic structure of data points, Laplacian
SVMs (Belkin, Niyogi, & Sindhwani, 2006; Melacci & Belkin, 2011)
add the manifold regularization to the objective function of SVMs.
That is, the following optimization problem is constructed:

min
f∈H

r1 ∥f ∥2
H +

l
i=1

max(0, 1 − yif (xi))s + r2f T Lf , (3)

where L is a Laplacianmatrix obtained from n training samples and
r2 is the weight of the norm of the function in a low-dimensional
manifold, which imposes the smoothness on the manifold. It is
proved in Belkin et al. (2006) that f admits an expansion in terms
of n training samples, denoted by

f (x) =

n
i=1

βik(xi, x). (4)

Substituting Eq. (4) into Eq. (3), one can obtain

min
f∈H

r1βTKβ +

l
i=1

max(0, 1 − yiK(:, i)Tβ)s + r2βTKLKβ, (5)

where K is the kernel matrix obtained by using n training samples
and K(:, i) denotes the ith column of K . Melacci and Belkin (2011)
noted that the computational complexity of solving Eq. (5) in
the dual is O(n3) while the computational complexity of solving
Eq. (5) in the primal is O(n2k), where k is empirically estimated to
be significantly smaller than n.

3. MKL in the primal based on the manifold regularization

Motivated by the facts that training LapSVMs in the primal
is much more effective than training LapSVMs in the dual
(Melacci & Belkin, 2011) andmultiple kernels can capture different



Download English Version:

https://daneshyari.com/en/article/6863439

Download Persian Version:

https://daneshyari.com/article/6863439

Daneshyari.com

https://daneshyari.com/en/article/6863439
https://daneshyari.com/article/6863439
https://daneshyari.com

