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Robust dimensionality reduction is an important issue in processing multivariate data. Two-dimensional
principal component analysis based on L1-norm (2DPCA-L1) is a recently developed technique for robust
dimensionality reduction in the image domain. The basis vectors of 2DPCA-L1, however, are still dense.
It is beneficial to perform a sparse modelling for the image analysis. In this paper, we propose a new
dimensionality reduction method, referred to as 2DPCA-L1 with sparsity (2DPCAL1-S), which effectively
combines the robustness of 2DPCA-L1 and the sparsity-inducing lasso regularization. It is a sparse variant
of 2DPCA-L1 for unsupervised learning. We elaborately design an iterative algorithm to compute the basis
vectors of 2DPCAL1-S. The experiments on image data sets confirm the effectiveness of the proposed

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Dimensionality reduction (DR) is of great importance for mul-
tivariate data analysis. For classifying typically high-dimensional
patterns in practice, DR can relieve the “curse of dimensionality”
effectively (Jain, Duin, & Mao, 2000). Principal component anal-
ysis (PCA) (Jolliffe, 1986) is perhaps the most popular DR tech-
nique. It seeks a few basis vectors such that the variances of
projected samples are maximized. In the domain of image anal-
ysis, two-dimensional PCA (2DPCA) (Yang, Zhang, Frangi, & Yang,
2004) is more efficient, due to its direct formulation based on raw
two-dimensional images.

Although PCA and 2DPCA have been widely applied in many
fields, they are vulnerable at the presence of atypical samples
because of the employment of the L2-norm in the variance for-
mulation. As a robust alternative, L1-norm-based approaches were
developed. Specifically, the L1-norm-based PCA variants include
L1-PCA (Ke & Kanade, 2005), R1-PCA (Ding, Zhou, He, & Zha, 2006),
PCA-L1 (Kwak, 2008), and non-greedy PCA-L1 (Nie, Huang, Ding,
Luo, & Wang, 2011). Li, Pang, and Yuan (2009) developed the L1-
norm-based 2DPCA (2DPCA-L1), which demonstrated encouraging
performance for the image analysis.

A limitation of the above methods is that the basis vectors
learned are still dense, which makes it difficult to explain the re-
sulting features. It is desirable to select the most relevant or salient
elements from a large number of features. To address this issue,
sparse modelling has been developed and received increasing at-
tention in the community of pattern classification (Wright et al.,
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2010). The sparsity was achieved by regularizing objective vari-
ables with a lasso penalty term using the L1-norm (Chen, Donoho,
& Saunders, 1998; Tibshirani, 1996). Mathematically, the classic
PCA approach could be reformulated as a regression-type opti-
mization problem, and then the sparsity-inducing lasso penalty
was imposed, resulting in sparse PCA (SPCA) (Zou, Hastie, & Tib-
shirani, 2006). The sparsity was further generalized to structured
version, producing structured sparse PCA (Jenatton, Obozinski, &
Bach, 2010). With the graph embedding platform (Yan et al., 2007),
various DR approaches were endowed with a unified sparse frame-
work by the L1-norm penalty (Cai, He, & Han, 2007; Wang, 2012;
Zhou, Tao, & Wu, 2011). Recently, the robustness of SPCA was im-
proved by the L1-norm maximization (Meng, Zhao, & Xu, 2012).

The sparse modelling for 2DPCA-L1, however, is still not ad-
dressed. Note that the L1-norm used in 2DPCA-L1 works as a ro-
bust measure of sample dispersion rather than regularizing basis
vectors. A common way of enforcing sparsity is to fix the L2-norm
and minimize the L1-norm with a length constraint.

In this paper, we limit our attention to the image analysis,
and consider extending 2DPCA-L1 with sparsity, referred to as
2DPCAL1-S. On account of the L1-norm used as the lasso penalty
in the sparsity-inducing modelling, we propose incorporating the
L1-norm lasso penalty, together with the fixed L2-norm, onto the
basis vectors of 2DPCA-L1. Consequently, 2DPCAL1-S maximizes
the L1-dispersion of samples subject to the elastic net (i.e.,
L2-norm and L1-norm) (Zou et al., 2006) constraint onto the basis
vectors. Formally, we combine the L1-dispersion and the elastic
net constraint onto the objective function. As can be seen, we use
the L1-norm for both robust and sparse modelling simultaneously.
Due to the involvement of the L1-norm in the two aspects, the
optimization of 2DPCAL1-S is not straightforward. We design an
elegant iterative algorithm to solve 2DPCAL1-S.
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The remainder of this paper is organized as follows. The con-
ventional 2DPCA-L1 method is briefly reviewed in Section 2. The
formulation of 2DPCAL1-S is proposed in Section 3. Section 4 re-
ports experimental results. And Section 5 concludes the paper.

2. Brief review of 2DPCA-L1

The 2DPCA-L1 approach, proposed by Li et al. (2009), finds basis
vectors that maximize the dispersion of projected image samples
in terms of the L1-norm. Suppose that X, ..., X, are a set of
training images with size g x p, where n is the number of images.
These images are assumed to be mean-centred.

Let v € RP be the first basis vector of 2DPCA-L1. It maximizes
the L1-norm-based dispersion of projected samples

n
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subject to ||vll, = 1, where || - ||y and || - ||, denote the L1-
norm and the L2-norm, respectively. In this paper, for a vector z =
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The computation of v is implemented by an iterative algorithm
as follows. Denote by t the iteration number. The basis vector
v(t 4+ 1) at the (t 4+ 1)th-step is updated according to
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where s;;(t) is defined as
sji(t) = sign(v' (£)X;) (5)
forj=1,...,q; i = 1,...,n, where sign(-) is the sign function.

This iterative procedure was theoretically shown to converge to a
local maximum value of g(v) (Li et al., 2009). The reminder basis
vectors are computed likewise by using the deflated samples with
previously obtained basis vectors.

3. 2DPCA-L1 with sparsity

3.1. Basicidea

Sparse modelling has been receiving exploding attention in
computer vision and pattern classification (Wright et al., 2010).
The obtained basis vectors of 2DPCA-L1, however, are still dense
(Li et al., 2009). In other words, the projection procedure involves
all the original features. As we know, a typical image usually has
a large number of features. There may exist irrelevant or redun-
dant features for classification. It is important to find a few salient
features, which correspond to specific parts of the image such as
eyes or mouth of a face image. To select a set of representative
features, the projection vectors are expected to have very sparse
elements with respect to such features. Such sparse projection

vectors, if learned correctly, could encode semantic information
and thus deliver valuable discriminative information. The sparse
modelling has been successfully applied to many classification
problems (Wright et al., 2010).

It is desirable to learn sparse basis vectors for the purpose of
classification. In light of the advantage of the L1-norm penalty in
the sparse modelling (Chen et al., 1998; Tibshirani, 1996), we pro-
pose regularizing the basis vectors of 2DPCA-L1 using the L1-norm
penalty together with the fixed L2-norm. We refer to the proposed
approach as 2DPCAL1-S. It results in sparse basis vectors. Note
that the L1-norm used in 2DPCAL1-S takes effect in two different
perspectives: measuring dispersion and regularizing basis vectors.
Computationally, we elaborately design an iterative algorithm to
implement 2DPCAL1-S.

3.2. Objective function

We impose the sparsity-inducing L1-norm penalty, as well as
the fixed L2-norm, onto the basis vector v. Specifically, we inte-
grate the elastic net into the objective function. The elastic net gen-
eralizes the L1-norm lasso penalty by combining the ridge penalty
and can circumvent potential limitations of the lasso (Zou et al.,
2006). Consequently, we wish to select a vector v such that the ob-
jective function

n q
n
hw) =3 > il = S IVIE = VI, (6)
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is maximized, where 7 and y are positive tuning parameters which
are usually selected by cross validation. Due to the absolute value
operation, it is not a direct issue to solve the optimization prob-
lem (6). We thus derive an iterative algorithm for optimization and
show its monotonicity in the following two subsections.

3.3. Iterative algorithm

An iterative algorithm for 2DPCAL1-S is formally presented as
follows. Let v(0) be the initial basis vector.

1. Lett = 0, and initialize v(t) as any p-dimensional vector.

2. Compute the quantity s;(t) as in (5), which results in value 1,
0, or -1 depending on vT(t)xﬁ larger than zero, equal to zero, or
less than zero, respectively.

3. Let
y(@) = Zn; Zq;sji(t)xjis (7)
and o
o = (J/ J|rvr];|(2|(t)|’ Ty lUZI(Z?J'(t)I)T’ ®)

where v (t) is the kth entry of v(t) fork = 1, ...
basis vector v(t) is updated as

V(e + 1) = y(6) o w(t), (9)

where o denotes the element-wise product between two vec-
tors.

4. If the objective function h(v(t + 1)) does not grow significantly,
then stop the iterative procedure and set v = v(t + 1). Other-
wise, sett < t + 1, and go to Step 2.

5. Output v* as the basis vector.

, p. Then, the

The computational complexity of the above algorithm is O(ngp)
per iteration. Note that the update formula (9) can be further
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