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a b s t r a c t

This paper is concerned with the global exponential anti-synchronization of a class of chaotic memristive
neural networks with time-varying delays. The dynamic analysis here employs results from the theory
of differential equations with discontinuous right-hand side as introduced by Filippov. And by using
differential inclusions theory, the Lyapunov functional method and the inequality technique, some new
sufficient conditions ensuring exponential anti-synchronization of two chaotic delayedmemristive neural
networks are derived. The new proposed results here are very easy to verify and they also improve
the earlier publications. Finally, a numerical example is given to illustrate the effectiveness of the new
scheme.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of memristor (as a contraction of memory and re-
sistor) was introduced and named by Prof. Chua in his seminal
paper Chua (1971) in 1971. The existence of the memristor as
the fourth ideal electrical circuit element (the other three funda-
mental circuit elements are the resistor, inductor and capacitor,
respectively) was predicted in 1971 based on logical symmetry
arguments, but it took scientists almost 40 years to invent a practi-
cal memristor device which was published by scientists in the lit-
erature (Strukov, Snider, Stewart, & Williams, 2008; Wang et al.,
2012).

Two properties of the memristor attracted much attention.
Firstly, its memory characteristic, and, secondly, its nanometer
dimensions. The memory property and latching capability enable
us to think about new methods for nano-computing, with the
nanometer scale device providing a very high density and is less
power hungry. From the previouswork (Strukov et al., 2008;Wang
et al., 2012), we know that the memristor exhibits features just as
the neurons in the human brain have. Because of this feature, we
can apply this device to build a new model of neural networks to
emulate the human brain, and its potential applications are in next
generation computers and powerful brain-like neural computers
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(Hu & Wang, 2010; Merrikh-Bayat & Shouraki, 2011; Pershin & Di
Ventra, 2010).

As we know, neural networks can be implemented by VLSI
circuits. For example, the Hopfield neural network model can
be implemented in a circuit where the self-feedback connection
weights and the connection weights are implemented by resistors.
Suppose that we use memristors instead of resistors, then we can
build a new model where the parameters change according to
its state; i.e., it is a state-dependent switching neural network.
Motivated by these facts, recently, the general memristor-based
neural networks with time-varying delays in Hu andWang (2010),
Wu, Wen, and Zeng (2012), Wu and Zeng (2012), Wu and Zeng
(2013), Zhang, Shen, and Sun (2012) and Zhang, Shen, Yin, and Sun
(2013) have been proposed and studied as follows:

dxi(t)
dt

= −xi(t)+

n
j=1

aij(xi)fj(xj(t))+

n
j=1

bij(xi)

× fj(xj(t − τij(t))), t ≥ 0, i = 1, 2, . . . , n, (1)

where

aij(xi) =


a∗

ij, |xi(t)| < Ti,
a∗∗

ij , |xi(t)| > Ti,

bij(xi) =


b∗

ij, |xi(t)| < Ti,
b∗∗

ij , |xi(t)| > Ti,

in which switching jumps Ti > 0, a∗

ij, a
∗∗

ij , b∗

ij, b
∗∗

ij are all constant
numbers, and τij(t) corresponds to the transmission delays and
satisfies 0 ≤ τij(t) ≤ τ (τ is a positive constant, i, j = 1, 2, . . . , n).
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In the real world, stability and synchronization of chaotic sys-
tems are very important due to its potential applications in many
different areas including secure communication, information sci-
ence, biological systems, optics and so on, and over the years a
lot of good results have appeared, see, e.g., Cao (2003), Cheng,
Liao, Yan, and Hwang (2006), Chen, Wu, and Zhou (2008), Hu,
Yu, Jiang, and Teng (2010), Liu, Wang, and Liu (2006). Shen and
Wang (2009), Sheng and Yang (2008), Song (2009), Tang, Wang,
Gao, Swift, and Kurths (2012), Tang, Gao, Zou, and Kurths (2012),
Tang andWong (2013), Wang, Liu, and Liu (2005) and Yu, Cao, and
Wang (2007). And in recent years, the anti-synchronization con-
trol also has been successfully applied to many areas for image
processing, information science and so on, see, e.g., Ahn (2009), Li
and Zhou (2006), Meng andWang (2007), Ren and Cao (2009), Wu
and Zeng (2013), Yau (2008), Zhao and Zhang (2011) and Zhu and
Cui (2007). In addition, by using anti-synchronization in communi-
cation systems, one may transmit digital signals by the transform
between synchronization and anti-synchronization continuously,
whichwill strengthen the security and secrecy. Therefore, the anti-
synchronization problem is an important area of study.

Themain contribution of this paper lies in the following aspects.
First, the dynamic analysis here employs results from the theory
of differential equations with discontinuous right-hand side as
introduced by Filippov. Additionally, a linear feedback controller
technique, which is totally different from the techniques employed
in Hu and Wang (2010), Wu et al. (2012), Wu and Zeng (2012),
Wu and Zeng (2013), Zhang et al. (2012), and Zhang et al. (2013),
is used to study the stabilization and anti-synchronization of
addressed neural networks with time-varying delays in this paper.
Furthermore, some new criteria are derived to ensure stabilization
and anti-synchronization of the neural networks. In addition, our
main results are obtained based on p-norm and a large number
of parameters are introduced in order to improve the generality,
integrity and elegance of the results. Lastly, the new proposed
results here are very easy to verify.

The organization of this paper is as follows. Some preliminaries
are introduced in Section 2. In Section 3, some sufficient
conditions for the exponential anti-synchronization are derived
by constructing a suitable Lyapunov-like function. And then
numerical simulations are given to demonstrate the effectiveness
of the proposed approach in Section 4. Finally, this paper endswith
a conclusion.

2. Preliminaries

Throughout this paper, solutions of all the systems considered
in the following are intended in Filippov’s sense (Filippov, 1988).
And [·, ·] represents the interval. In Banach space of all continuous
functions C([−τ , 0], Rn) equipped with the norm defined by
∥ψ∥ = sup−τ≤t≤0[

n
i=1 |ψi(t)|p]1/p, p > 1, for all ψ = (ψ1(t),

ψ2(t), . . . , ψn(t)) ∈ C([−τ , 0], Rn), co[ξ
i
, ξ i] denotes the convex

hull. For a continuous function k(t) : R → R,D+k(t) is called the
upper right dini derivative and defined as D+k(t) = limh→0+

1
h

(k(t + h) − k(t)). System (1) has the following form of initial
condition: x(s) = φ(s) = (φ1(s), φ2(s), . . . , φn(s))T ∈ C([−τ , 0],
Rn). For convenience, now, we first introduce the following
definitions about the set-valued map and differential inclusion
(Aubin & Cellina, 1984; Clarke, Ledyaev, Stem, & Wolenski, 1998;
Filippov, 1988).

Definition 1. Let E ⊂ Rn, x → F(x) be called a set-valued map
from E ↩→ Rn, if to each point x of a set E ⊂ Rn, there corresponds
a nonempty set F(x) ⊂ Rn.

Definition 2. A set-valued map F with nonempty values is said to
be upper-semi-continuous at x0 ∈ E ⊂ Rn if, for any open set N
containing F(x0), there exists a neighborhood M of x0 such that
F(M) ⊂ N . F(x) is said to have a closed (convex, compact) image if
for each x ∈ E, F(x) is closed (convex, compact).

Definition 3. For the system dx
dt = g(x), x ∈ Rn, with discontinu-

ous right-hand sides, a set-valued map is defined as

Φ(x) =


δ>0


µ(N)=0

co[g(B(x, δ) \ N)],

where co[E] is the closure of the convex hull of set E, B(x, δ) = {y :

∥y − x∥ ≤ δ}, and µ(N) is a Lebesgue measure of set N . A solution
in Filippov’s sense (Filippov, 1988) of the Cauchy problem for this
system with initial condition x(0) = x0 is an absolutely contin-
uous function x(t), t ∈ [0, T ], which satisfies x(0) = x0 and the
differential inclusion:
dx
dt

∈ Φ(x), for a.e. t ∈ [0, T ].

By applying the theories of set-valued maps and differential
inclusions above, the memristor-based neural network (1) can be
written as the following differential inclusion:

dxi(t)
dt

∈ −xi(t)+

n
j=1

co[aij, aij]fj(xj(t))+

n
j=1

co[bij, bij]

× fj(xj(t − τij(t))), for a.e. t ≥ 0, i = 1, 2, . . . , n, (2a)

where

aij = min{a∗

ij, a
∗∗

ij }, aij = max{a∗

ij, a
∗∗

ij },

bij = min{b∗

ij, b
∗∗

ij }, bij = max{b∗

ij, b
∗∗

ij }.

And fromAubin andCellina (1984), Clarke et al. (1998) and Filippov
(1988), we know that the differential inclusion (2a) means that
there existaij ∈ co[aij, aij],bij ∈ co[bij, bij], such that

dxi(t)
dt

= −xi(t)+

n
j=1

aijfj(xj(t))+

n
j=1

bijfj
× (xj(t − τij(t))), t ≥ 0, i = 1, 2, . . . , n. (2b)

Throughout this paper, we consider system (2a) or (2b) as the
drive system and corresponding response system are as follows:

dyi(t)
dt

∈ −yi(t)+

n
j=1

co[aij, aij]fj(yj(t))+

n
j=1

co[bij, bij]

× fj(yj(t − τij(t)))+ ui(t), for a.e. t ≥ 0, (3a)

or

dyi(t)
dt

= −yi(t)+

n
j=1

aijfj(yj(t))+

n
j=1

bijfj(yj(t − τij(t)))

+ ui(t), t ≥ 0, i = 1, 2, . . . , n, (3b)

where ui(t), i = 1, 2, . . . , n are the appropriate control input to
obtain a certain control objective.

Now we do the following assumptions for the system (1):

(H1) For ∀s1, s2 ∈ R, s1 ≠ s2, the neuron activation functions
fi(i = 1, 2, . . . , n) are odd, bounded and satisfy the Lipschitz
condition

|fi(s1)− fi(s2)| ≤ ρi|s1 − s2|,

where ρi > 0.
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